6.886 Delaunay **Triangulation**

Slides Credit: UFL COT5520, CIS4930 Spring 18 with minor modifications Reference: Computational Geometry, Algorithms and Applications, 3rd Edition yiqiuw@mit.edu

- a terrain is the graph of a function $f : A \subset \mathbb{R}^2 \to \mathbb{R}$
- we know only height values for a \bullet set of measurement points
- **•** how can we interpolate the height at other points?
-

- a terrain is the graph of a function $f : A \subset \mathbb{R}^2 \to \mathbb{R}$
- we know only height values for a set of measurement points
- **•** how can we interpolate the height at other points?
- using a triangulation

- a terrain is the graph of a function $f : A \subset \mathbb{R}^2 \to \mathbb{R}$
- we know only height values for a set of measurement points
- **o** how can we interpolate the height at other points?
- using a triangulation \bigcirc

- a terrain is the graph of a function $f : A \subset \mathbb{R}^2 \to \mathbb{R}$
- we know only height values for a set of measurement points
- **o** how can we interpolate the height at other points?
- using a triangulation

Motivation: Terrains

- a terrain is the graph of a function $f : A \subset \mathbb{R}^2 \to \mathbb{R}$
- we know only height values for a set of measurement points
- **•** how can we interpolate the height at other points?
- using a triangulation – but which?

Let $P = \{p_1, \ldots, p_n\}$ be a point set. A triangulation of P is a maximal planar subdivision with vertex set *P*.

Let $P = \{p_1, \ldots, p_n\}$ be a point set. A triangulation of P is a maximal planar subdivision with vertex set *P*.

Complexity:

- 2*n*−2−*k* triangles
- 3*n*−3−*k* edges

where *k* is the number of points in *P* on the convex hull of *P*.

Angle Vector of a Triangulation

- Let T be a triangulation of *P* with *m* triangles and 3*m* vertices. Its angle vector is $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ where $\alpha_1, \ldots, \alpha_{3m}$ are the angles of T sorted by increasing value.
- Let T� be another triangulation of *P*. $\mathsf{W\!e}$ define $A(\mathcal{T}) > A(\mathcal{T}')$ if $A(\mathcal{T})$ is lexicographically larger than $A(\mathcal{T}')$.
- \mathfrak{T} is angle optimal if $A(\mathfrak{T}) \geq A(\mathfrak{T}')$ for all triangulations \mathcal{T}' of P.

Angle Vector of a Triangulation

- Let T be a triangulation of *P* with *m* triangles and 3*m* vertices. Its angle vector is $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ where $\alpha_1, \ldots, \alpha_{3m}$ are the angles of T sorted by increasing value.
- \bullet Let \mathfrak{T}' be another triangulation of P. $\operatorname{\mathsf{We}}$ define $A({\mathfrak T})>A({\mathfrak T}')$ if $A({\mathfrak T})$ is lexicographically larger than $A(\mathcal{T}')$.
- \mathfrak{T} is angle optimal if $A(\mathfrak{T}) \geq A(\mathfrak{T}')$ for all triangulations \mathcal{T}' of P.

Angle Vector of a Triangulation

- Let T be a triangulation of *P* with *m* triangles and 3*m* vertices. Its angle vector is $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ where $\alpha_1, \ldots, \alpha_{3m}$ are the angles of T sorted by increasing value.
- \bullet Let \mathfrak{T}' be another triangulation of P. $\operatorname{\mathsf{We}}$ define $A({\mathfrak T})>A({\mathfrak T}')$ if $A({\mathfrak T})$ is lexicographically larger than $A(\mathcal{T}')$.
- \mathfrak{T} is angle optimal if $A(\mathfrak{T}) \geq A(\mathfrak{T}')$ for all triangulations \mathfrak{T}' of P.

• Change in angle vector:

 α_1,\ldots,α_6 are replaced by $\alpha'_1,\ldots,\alpha'_6$.

- The edge $e = \overline{p_ip_j}$ is illegal if $\min_{1 \leq i \leq 6} \alpha_i < \min_{1 \leq i \leq 6} \alpha'_i$.
-

- **•** Change in angle vector: α_1,\ldots,α_6 are replaced by $\alpha'_1,\ldots,\alpha'_6$.
- The edge $e = \overline{p_ip_j}$ is illegal if $\min_{1 \leq i \leq 6} \alpha_i < \min_{1 \leq i \leq 6} \alpha'_i$.
- **Flipping an illegal edge increases the angle vector.**

- **•** Change in angle vector: α_1,\ldots,α_6 are replaced by $\alpha'_1,\ldots,\alpha'_6$.
- The edge $e = \overline{p_ip_j}$ is illegal if $\min_{1 \leq i \leq 6} \alpha_i < \min_{1 \leq i \leq 6} \alpha'_i$.
- **•** Flipping an illegal edge increases the angle vector.

- **•** Change in angle vector: α_1,\ldots,α_6 are replaced by $\alpha'_1,\ldots,\alpha'_6$.
- The edge $e = \overline{p_ip_j}$ is illegal if $\min_{1 \leq i \leq 6} \alpha_i < \min_{1 \leq i \leq 6} \alpha'_i$.
- **•** Flipping an illegal edge increases the angle vector.

Characterisation of Illegal Edges

How do we determine if an edge is illegal?

Characterisation of Illegal Edges

How do we determine if an edge is illegal?

Lemma: The edge $\overline{p_i p_j}$ is illegal if and only if p_l lies in the interior of the circle *C*. *pi*

Thales Theorem

Theorem: Let C be a circle, ℓ a line intersecting *C* in points *a* and *b*, and *p*,*q*,*r*,*s* points lying on the same side of ℓ . Suppose that p, q lie on C , r lies inside *C*, and *s* lies outside *C*. Then

 \angle *arb* > \angle *apb* = \angle *agb* > \angle *asb*,

where $\angle abc$ denotes the smaller angle defined by three points *a*,*b*,*c*.

Thales Theorem

Theorem: Let C be a circle, ℓ a line intersecting *C* in points *a* and *b*, and *p*,*q*,*r*,*s* points lying on the same side of ℓ . Suppose that p, q lie on C, r lies inside *C*, and *s* lies outside *C*. Then

 \angle *arb* > \angle *apb* = \angle *agb* > \angle *asb*,

where $\angle abc$ denotes the smaller angle defined by three points *a*,*b*,*c*.

Thales Theorem

Theorem: Let C be a circle, ℓ a line intersecting *C* in points *a* and *b*, and *p*,*q*,*r*,*s* points lying on the same side of ℓ . Suppose that p, q lie on C, r lies inside *C*, and *s* lies outside *C*. Then

 \angle *arb* > \angle *apb* = \angle *agb* > \angle *asb*,

where $\angle abc$ denotes the smaller angle defined by three points *a*,*b*,*c*.

Legal Triangulations

A legal triangulation is a triangulation that does not contain any illegal edge.

Legal Triangulations

A legal triangulation is a triangulation that does not contain any illegal edge.

Algorithm $LEGALTRIANGULATION(T)$ Input. A triangulation T of a point set *P*. Output. A legal triangulation of *P*.

- 1. **while** $\mathcal T$ contains an illegal edge $\overline{p_i p_j}$
- 2. **do** $(*$ Flip $\overline{p_i p_j} (*)$
3. Let $p_i p_i p_k$ and
- Let $p_i p_j p_k$ and $p_i p_j p_l$ be the two triangles adjacent to *pipj*.
- 4. Remove $\overline{p_i p_j}$ from \mathcal{T} , and add $\overline{p_k p_l}$ instead.

5. return T

Legal Triangulations

A legal triangulation is a triangulation that does not contain any illegal edge.

Algorithm $LEGALTRIANGULATION(T)$ Input. A triangulation T of a point set *P*. Output. A legal triangulation of *P*.

- 1. **while** $\mathcal T$ contains an illegal edge $\overline{p_i p_j}$
- 2. **do** $(*$ Flip $\overline{p_i p_j} (*)$
3. Let $p_i p_i p_k$ and
- Let $p_i p_j p_k$ and $p_i p_j p_l$ be the two triangles adjacent to *pipj*.
- 4. Remove $\overline{p_i p_j}$ from \mathcal{T} , and add $\overline{p_k p_l}$ instead.
- 5. return T

Question: Why does this algorithm terminate?

Voronoi Diagram and Delaunay Graph

Let *P* be a set of *n* points in the plane.

- The Voronoi diagram Vor(*P*) is the subdivision of the plane into Voronoi cells $V(p)$ for all $p \in P$.
- Let S be the *dual graph* of Vor(*P*).
-
-

Properties Randomized Incremental Construction Analysis

- Let *P* be a set of *n* points in the plane.
- The Voronoi diagram Vor(*P*) is the subdivision of the plane into Voronoi cells $V(p)$ for all $p \in P$.
- Let S be the *dual graph* of $\text{Vor}(P)$.
- The Delaunay graph DG(*P*) is the straight line embedding of G.
-

- Let *P* be a set of *n* points in the plane.
- The Voronoi diagram Vor(*P*) is the subdivision of the plane into Voronoi cells $V(p)$ for all $p \in P$.
- Let S be the *dual graph* of $\text{Vor}(P)$.
- The Delaunay graph DG(*P*) is the straight line embedding of G.
- **Question:** How can we compute the Delaunay graph?

- Let *P* be a set of *n* points in the plane.
- The Voronoi diagram Vor(*P*) is the subdivision of the plane into Voronoi cells $V(p)$ for all $p \in P$.
- Let S be the *dual graph* of $\text{Vor}(P)$.
- **The Delaunay graph** $\mathcal{DG}(P)$ is the straight line embedding of G.
- **Question:** How can we compute the Delaunay graph?

- Let *P* be a set of *n* points in the plane.
- The Voronoi diagram Vor(*P*) is the subdivision of the plane into Voronoi cells $V(p)$ for all $p \in P$.
- Let S be the *dual graph* of $\text{Vor}(P)$.
- **o** The Delaunay graph $\mathcal{DG}(P)$ is the straight line embedding of G.
- **o Question:** How can we compute the Delaunay graph?

Properties Randomized Incremental Construction Analysis

Planarity of the Delaunay Graph

Theorem: The Delaunay graph of a planar point set is a plane graph.

Properties Randomized Incremental Construction Analysis

Delaunay Triangulation

If the point set P is in general position then the Delaunay graph is a triangulation.

Properties Randomized Incremental Construction Analysis

Empty Circle Property

Theorem: Let P be a set of points in the plane, and let T be a triangulation of *P*. Then T is a Delaunay triangulation of *P* if and only if the circumcircle of any triangle of $\mathcal T$ does not contain a point of *P* in its interior.

 $\mathbf{3}^{\circ}$

Properties Randomized Incremental Construction Analysis

Delaunay Triangulations and Legal Triangulations

Theorem: Let P be a set of points in the plane. A triangulation T of P is legal if and only if T is a Delaunay triangulation.

Properties Randomized Incremental Construction **Analysis**

Angle Optimality and Delaunay Triangulations

Theorem: Let P be a set of points in the plane. Any angle-optimal triangulation of *P* is a Delaunay triangulation of *P*. Furthermore, any Delaunay triangulation of *P* maximizes the minimum angle over all triangulations of *P*.

Randomized Incremental Construction

Algorithm DelaunayTriangulation(*P*)

Input. A set P of $n+1$ points in the plane.

Output. A Delaunay triangulation of *P*.

- 1. Initialize $\mathcal T$ as the triangulation consisting of an outer triangle $p_0p_{-1}p_{-2}$ containing points of *P*, where p_0 is the lexicographically highest point of *P*.
- 2. Compute a random permutation p_1, p_2, \ldots, p_n of $P \setminus \{p_0\}$.

3. for
$$
r \leftarrow 1
$$
 to n

- 4. do
- 5. $\text{LOCATE}(p_r, \mathcal{T})$
- 6. INSERT (p_r, \mathcal{T})
- 7. Discard p_{-1} and p_{-2} with all their incident edges from \mathcal{T} .
8. **return** \mathcal{T}
- return $\mathfrak T$

Introduction **Triangulations** Delaunay Triangulations **Properties** Randomized Incremental Construction Analysis

Randomized Incremental Construction

Randomized Incremental Construction

 $INSET(p_r, T)$

- 1. if *pr* lies in the interior of the triangle *pipjpk*
- 2. **then** Add edges from p_r to the three vertices of $p_i p_j p_k$, thereby splitting $p_i p_j p_k$ into three triangles.
- 3. LEGALIZEEDGE(p_r , $\overline{p_i p_j}$, T)

4.
$$
LEGALIZEEDGE(p_r, \overline{p_j p_k}, \mathcal{T})
$$

5.
$$
LEGALIZEEDGE(p_r, \overline{p_k p_i}, \mathcal{T})
$$

6. **else** $(* p_r$ lies on an edge of $p_i p_j p_k$, say the edge $\overline{p_i p_j} (*)$
7. Add edges from p_r to p_k and to the third vertex p_l Add edges from p_r to p_k and to the third vertex p_l of the other triangle that is incident to $\overline{p_i p_j}$, thereby splitting the two triangles incident to *pipj* into four triangles.

8.
$$
LEGALIZEEDGE(p_r, \overline{p_i p_l}, \mathcal{T})
$$

- 9. LEGALIZEEDGE(p_r , $\overline{p_l p_j}$, T)
- 10. LEGALIZEEDGE(p_r , $\overline{p_j p_k}$, T)
- 11. LEGALIZEEDGE($p_r, \overline{p_k p_i}, \mathcal{T}$)

Randomized Incremental Construction

$LEGALIZEEDGE(p_r, \overline{p_i p_j}, \mathcal{T})$

- 1. (∗ The point being inserted is *pr*, and $\overline{p_i p_j}$ is the edge of T that may need to be flipped. ∗)
- 2. **if** $\overline{p_i p_j}$ is illegal

3. **then** Let $p_i p_j p_k$ be the triangle

- adjacent to $p_r p_i p_j$ along $\overline{p_i p_j}$.
- 4. (∗ Flip *pipj*: ∗) Replace *pipj* with *prpk*.
- 5. LEGALIZEEDGE(p_r , $\overline{p_i p_k}$, T)
- 6. LEGALIZEEDGE(p_r , $\overline{p_k p_i}$, T)

Properties Randomized Incremental Construction Analysis

Randomized Incremental Construction

All edges created are incident to *pr*.

Properties Randomized Incremental Construction Analysis

Randomized Incremental Construction

All edges created are incident to *pr*.

Correctness: Are new edges legal?

Correctness

- Newly added edges
- Edges due to flipping

Correctness

- Newly added edges
- Edges due to flipping

Correctness

- Newly added edges
- Edges due to flipping

Randomized Incremental Construction

Initializing triangulation: treat *p*−¹ and *p*−² symbolically. No actual coordinates. Modify tests for point location and illegal edges to work as if far away.

Point location: search data structure.

Point visits triangles of previous triangulations that contain it.

Introduction **Triangulations** Delaunay Triangulations **Properties** Randomized Incremental Construction Analysis Randomized Incremental Construction split Δ_1 flip $\overline{p_i p_j}$ flip $\overline{p_i p_k}$ *pi pk* Δ_1 Δ_1 Δ_2 $\left(\Delta_{2}\right)$ Δ ₃' Δ_3 *pr* Ω_1 Ω_2 Ω_3 Δ_2 Δ_3 *pi* p_j (Δ_1) (Δ_2) (Δ_3) (Δ_3) (Δ_4) (Δ_5) (Δ_6) Δ_4 $\widehat{(\Delta_{51}}$ \sum_{Θ} Δ_7 Δ_3 Δ_4 $\overline{\Delta_3}$ Δ_5 $\widehat{\Delta_{4}}$ $\widehat{\Delta_{5}}$

 $\widehat{\Delta_{\theta}}$ $\widehat{\langle \Delta_{7} \rangle}$

Analysis

- \bullet Expected total number of triangles created is $O(n)$
	- Space usage (point data structure) O(n)
	- \circ Expected time other than point location queries $O(n)$
- Expected total number of triangles visited while search point location data structure is O(n log n)

Analysis

Lemma: Total number of triangles created is at most 9n + 1

- \bullet For each of p_r added, let it have k incident edges
- It creates at most 2k 3 triangles
- Known: delaunay graph has at most 3(r+3)-6 edges, three of which is the outer triangle
- \bullet 2[3(r+3) 9] = 6r -- expected degree of a random point is 6
- $-2 * 6 3 = 9$
- +1 for the outer triangle