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Introduction
Triangulations

Delaunay Triangulations

Motivation: Terrains

a terrain is the graph of a
function f : A⊂ R2 → R
we know only height values for a
set of measurement points

how can we interpolate the
height at other points?

using a triangulation
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Delaunay Triangulations

Motivation: Terrains

a terrain is the graph of a
function f : A⊂ R2 → R
we know only height values for a
set of measurement points

how can we interpolate the
height at other points?

using a triangulation
– but which?
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Introduction
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Delaunay Triangulations

Triangulation

Let P = {p1, . . . ,pn} be a point set. A triangulation of P is a
maximal planar subdivision with vertex set P.
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Triangulations

Delaunay Triangulations

Triangulation

Let P = {p1, . . . ,pn} be a point set. A triangulation of P is a
maximal planar subdivision with vertex set P.

Complexity:

2n−2− k triangles

3n−3− k edges

where k is the number of points in P
on the convex hull of P.
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Triangulations

Delaunay Triangulations

Angle Vector of a Triangulation

Let T be a triangulation of P with m triangles and 3m
vertices. Its angle vector is A(T) = (α1, . . . ,α3m) where
α1, . . . ,α3m are the angles of T sorted by increasing value.

Let T� be another triangulation of P.
We define A(T) > A(T�) if A(T) is
lexicographically larger than A(T�).

T is angle optimal if A(T)≥ A(T�)
for all triangulations T� of P.
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A(T) = (α1, . . . ,α6)
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Triangulations

Delaunay Triangulations

Edge Flipping
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pl

edge flip

Change in angle vector:
α1, . . . ,α6 are replaced by α �1, . . . ,α

�
6.

The edge e = pipj is illegal if min1≤i≤6 αi < min1≤i≤6 α �i .

Flipping an illegal edge increases the angle vector.
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Delaunay Triangulations

Characterisation of Illegal Edges

How do we determine if an edge is illegal?
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Delaunay Triangulations

Characterisation of Illegal Edges

How do we determine if an edge is illegal?

Lemma: The edge pipj is illegal
if and only if pl lies in the interior
of the circle C. pi

p j

pk

pl

illegal
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Triangulations

Delaunay Triangulations

Thales Theorem

Theorem: Let C be a circle, � a line
intersecting C in points a and b, and
p,q,r,s points lying on the same side
of �. Suppose that p,q lie on C, r lies
inside C, and s lies outside C. Then

�arb > �apb = �aqb > �asb,

where �abc denotes the smaller
angle defined by three points a,b,c.
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Delaunay Triangulations

Legal Triangulations

A legal triangulation is a triangulation that does not contain
any illegal edge.
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Delaunay Triangulations

Legal Triangulations

A legal triangulation is a triangulation that does not contain
any illegal edge.

Algorithm LegalTriangulation(T)
Input. A triangulation T of a point set P.
Output. A legal triangulation of P.
1. while T contains an illegal edge pipj

2. do (∗ Flip pipj ∗)
3. Let pipjpk and pipjpl be the two triangles adjacent

to pipj.
4. Remove pipj from T, and add pkpl instead.
5. return T
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Delaunay Triangulations

Legal Triangulations

A legal triangulation is a triangulation that does not contain
any illegal edge.

Algorithm LegalTriangulation(T)
Input. A triangulation T of a point set P.
Output. A legal triangulation of P.
1. while T contains an illegal edge pipj

2. do (∗ Flip pipj ∗)
3. Let pipjpk and pipjpl be the two triangles adjacent

to pipj.
4. Remove pipj from T, and add pkpl instead.
5. return T

Question: Why does this algorithm terminate?
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Triangulations

Delaunay Triangulations

Properties
Randomized Incremental Construction
Analysis

Voronoi Diagram and Delaunay Graph

Let P be a set of n points in the
plane.

The Voronoi diagram Vor(P) is
the subdivision of the plane into
Voronoi cells V(p) for all p ∈ P.

Let G be the dual graph of
Vor(P).
The Delaunay graph DG(P) is
the straight line embedding of G.

Question: How can we
compute the Delaunay graph?
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Delaunay Triangulations

Properties
Randomized Incremental Construction
Analysis

Planarity of the Delaunay Graph

Theorem: The Delaunay graph of a planar point set is a plane
graph.

Ci j

pi

p j

contained in V(pi)

contained in V(p j)
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Delaunay Triangulation

If the point set P is in general position then the Delaunay graph
is a triangulation.

vf
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Delaunay Triangulations

Properties
Randomized Incremental Construction
Analysis

Empty Circle Property

Theorem: Let P be a set of points in the plane, and let T be
a triangulation of P. Then T is a Delaunay triangulation of P
if and only if the circumcircle of any triangle of T does not
contain a point of P in its interior.
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Delaunay Triangulations

Properties
Randomized Incremental Construction
Analysis

Delaunay Triangulations and Legal Triangulations

Theorem: Let P be a set of points in the plane. A triangulation
T of P is legal if and only if T is a Delaunay triangulation.

pi

p j

pk

pl

C(pi p j pk)

pm C(pi p j pm)

e
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Delaunay Triangulations

Properties
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Angle Optimality and Delaunay Triangulations

Theorem: Let P be a set of points in the plane. Any
angle-optimal triangulation of P is a Delaunay triangulation of
P. Furthermore, any Delaunay triangulation of P maximizes
the minimum angle over all triangulations of P.
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Randomized Incremental Construction

Algorithm DelaunayTriangulation(P)
Input. A set P of n+1 points in the plane.
Output. A Delaunay triangulation of P.
1. Initialize T as the triangulation consisting of an outer

triangle p0p−1p−2 containing points of P, where p0 is the
lexicographically highest point of P.

2. Compute a random permutation p1,p2, . . . ,pn of P\{p0}.
3. for r← 1 to n
4. do
5. Locate(pr,T)
6. Insert(pr,T)
7. Discard p−1 and p−2 with all their incident edges from T.
8. return T
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Delaunay Triangulations
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Randomized Incremental Construction

pr

pi

pk

p j

pr

p j

pi

pkpl

pr lies in the interior of a triangle pr falls on an edge
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Randomized Incremental Construction

Insert(pr,T)
1. if pr lies in the interior of the triangle pipjpk
2. then Add edges from pr to the three vertices of pipjpk, thereby

splitting pipjpk into three triangles.
3. LegalizeEdge(pr,pipj,T)
4. LegalizeEdge(pr,pjpk,T)
5. LegalizeEdge(pr,pkpi,T)
6. else (∗ pr lies on an edge of pipjpk, say the edge pipj ∗)
7. Add edges from pr to pk and to the third vertex pl of the

other triangle that is incident to pipj, thereby splitting the
two triangles incident to pipj into four triangles.

8. LegalizeEdge(pr,pipl,T)
9. LegalizeEdge(pr,plpj,T)
10. LegalizeEdge(pr,pjpk,T)
11. LegalizeEdge(pr,pkpi,T)
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Randomized Incremental Construction

LegalizeEdge(pr,pipj,T)
1. (∗ The point being inserted is pr, and

pipj is the edge of T that may need to
be flipped. ∗)

2. if pipj is illegal
3. then Let pipjpk be the triangle

adjacent to prpipj along pipj.
4. (∗ Flip pipj: ∗) Replace pipj

with prpk.
5. LegalizeEdge(pr,pipk,T)
6. LegalizeEdge(pr,pkpj,T)

pr pi

p j pk

Computational Geometry Lecture 12: Delaunay Triangulations

37



Introduction
Triangulations

Delaunay Triangulations

Properties
Randomized Incremental Construction
Analysis

Randomized Incremental Construction

=⇒

pr

All edges created are incident to pr.
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Randomized Incremental Construction

=⇒

pr

All edges created are incident to pr.

Correctness: Are new edges legal?
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Correctness

● Newly added edges
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Introduction
Triangulations

Delaunay Triangulations

Properties
Randomized Incremental Construction
Analysis

Randomized Incremental Construction

Initializing triangulation: treat p−1 and p−2 symbolically.
No actual coordinates.
Modify tests for point location and illegal edges to work as if
far away.

Point location: search data structure.
Point visits triangles of previous triangulations that contain it.
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Randomized Incremental Construction

split Δ1

flip pi p j

flip pi pk

pi

pk

Δ1
Δ1

Δ2

Δ2

Δ3

Δ3

pr Δ1 Δ2 Δ3

Δ2

Δ3
pi

p j Δ1 Δ2 Δ3

Δ4

Δ4 Δ5
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Δ7

Δ7Δ6
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Analysis

● Expected total number of triangles created is O(n)
○ Space usage (point data structure) O(n)
○ Expected time other than point location queries O(n)

● Expected total number of triangles visited while search point location data 
structure is O(n log n)



Analysis

Lemma: Total number of triangles created is at most 9n + 1

● For each of p
r
 added, let it have k incident edges

● It creates at most 2k - 3 triangles
● Known: delaunay graph has at most 3(r+3)-6 edges, three of which is the 

outer triangle
● 2[ 3(r+3) - 9 ] = 6r -- expected degree of a random point is 6
● 2 * 6 - 3 = 9
● +1 for the outer triangle


