Parallel d-D Delaunay Triangulations in Shared and Distributed Memory Daniel Funke and Peter Sanders

Jared Di Carlo

March 14, 2019

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Triangulation in Arbitrary Dimensions

Definition

A k-simplex is a k-dimensional generalization of a triangle.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

3D Triangulation

Delaunay Triangulation in Arbitrary Dimensions

Definition

In \mathbb{R}^n , given a set S of points, the Delaunay Triangulation of S is a triangulation of S such that the circumsphere of any simplex in $D(S)$ does not contain any other point in S.

Delaunay Triangulation in Arbitrary Dimensions

- In \mathbb{R}^2 , Delaunay maximizes the minimum angle
- In \mathbb{R}^3 , it doesn't
- In \mathbb{R}^n , it minimizes the maximum containment sphere
- \triangleright Number of tetrahedra in 3D Delaunay tetrahedralization

KORKAR KERKER E VOOR

- \triangleright $O(n)$: uniform volume
- \triangleright O(n log n): uniform surface
- \triangleright $O(n^2)$: worst case (two lines)

Sequential 3D Delaunay

 \blacktriangleright Randomized insertion

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

- \blacktriangleright Flipping
- \blacktriangleright Watson Method

Watson Method

イロト イ部 トイ君 トイ君 トッ君 290

Strategy

 290 メロメ メ都 メメ きょ メモメ 重

Part 1: Split

1: if $n < N \vee r = \log P$ then 2: return sequential Delaunay (P) 3: $k \leftarrow$ splitting Dimension (P) 4: $(\mathbf{P}_1 \quad \mathbf{P}_2) = (p_1 \quad \cdots \quad p_s \quad | \quad p_{s+1} \quad \cdots \quad p_n) \leftarrow \text{divide}(\mathbf{P}, k)$ 5: $\mathbf{T} = (T_1 \ T_2) \leftarrow (\text{Delaunay}(\mathbf{P}_1, r+1) \text{ Delaunay}(\mathbf{P}_2, r+1))$

KORK ERKER ADE YOUR

- \blacktriangleright Constant
- \blacktriangleright Alternating
- \blacktriangleright Largest

Part 2: Finding Border Triangles

6:
$$
\mathbf{B} \leftarrow \varnothing
$$
; $\mathbf{Q} \leftarrow$ convexHull $(T_1) \cup$ convexHull (T_2) \triangleright initialize 7: **parfor** $s_{i,x} \in \mathbf{Q}$ **do** \triangleright si $\operatorname{mark}(s_{i,x})$ 9: **if** circumsphere $(s_{i,x}) \cap$ boundingBox $(T_j) \neq \varnothing$, with $i \neq j$ **then** 10: $\mathbf{B} \cup = \{s_{i,x}\} \rightarrow$ circumsphere intersects \circ to $s_{i,y} \in$ neighbors $(s_{i,x}) \land \neg$ marked $(s_{i,y})$ **do** 12: $\mathbf{Q} \cup = s_{i,y}; \quad \operatorname{mark}(s_{i,y})$ 13: $T_B \leftarrow$ Delaunay(verties $(\mathbf{B}), r + 1)$

イロト イ御 トイミト イミト ニミー りんぴ

14:
$$
T \leftarrow (T_1 \cup T_2) \setminus \mathbf{B}; \quad \mathbf{Q} \leftarrow \varnothing
$$

\n15: **parfor** $s_b \in T_B$ **do**
\n16: **if** vertices $(s_b) \not\subset \mathbf{P}_1 \land \text{vertices}(s_b) \not\subset \mathbf{P}_2$ **then**
\n17: $T \cup = \{s_b\}; \quad Q \cup = \{s_b\}$
\n18: **else**
\n19: **if** $\exists s \in \mathbf{B} : \text{vertices}(s) = \text{vertices}(s_b)$ **then**
\n20: $T \cup = \{s_b\}; \quad Q \cup = \{s_b\}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Neighborhood update: 21: parfor $s_x \in Q$ do for $d \in \{1, ..., D + 1\}$ do $22:$ **if** neighbors_{d} $(s_x) \notin T$ **then** $23:$ $C \leftarrow \{s_c : f_d(s_x) = f_d(s_c)\}\$ $24:$ for $s_c \in C$ do $25:$ **if** $|\text{vertices}(s_x) \cap \text{vertices}(s_c)| = D$ **then** $26:$ $neighbors_d(s_x) \leftarrow s_c; \quad Q \cup = s_c$ $27:$ 28: $return T$

KORK ERKER ADE YOUR

- \blacktriangleright Check for duplicates
	- \blacktriangleright Hash table of simplices
- \blacktriangleright Update Neighbors
	- \blacktriangleright Face hash table
	- \blacktriangleright Build during Part 2
- \blacktriangleright Merge Large Blocks
	- ▶ Binary Search Tree
	- \triangleright O(log k) access after k merges

K ロ > K @ > K 할 > K 할 > 1 할 : ⊙ Q Q^

Results

メロトメ 御き メミドメミド 一番 2990

Results

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ... 重 299

Comparison Of Results

- \blacktriangleright Tested on 1 million uniformly distributed points (same dataset)
- \triangleright Different output size depending on # of threads?
- \triangleright Volume is wrong
- ▶ Intel E5-2699V3 (2014, 2.30 GHz, 18 cores), 32 GB RAM (nobody used this much)
- \triangleright Very hard to find program (author has deleted published GitHub page)

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

- \blacktriangleright Results?
	- Paper: $50,000,000$ points in 64 seconds on 32 cores (24k pts/(sec cpu))
	- \blacktriangleright My result: 1,000,000 points in 42 seconds on 16 cores $(1.4k \text{ pts}/(\text{sec cpu}))$

KORK ERKER ADE YOUR

- \triangleright Do we actually need Delaunay?
	- \triangleright Delaunay algorithms are $O(n \log n)$
	- **Can get a "good" tetredralization in** $O(n)$ **time...**