Parallel *d*-D Delaunay Triangulations in Shared and Distributed Memory Daniel Funke and Peter Sanders

Jared Di Carlo

March 14, 2019

Triangulation in Arbitrary Dimensions

Definition

A *k*-simplex is a *k*-dimensional generalization of a triangle.

3D Triangulation

Delaunay Triangulation in Arbitrary Dimensions

Definition

In \mathbb{R}^n , given a set S of points, the Delaunay Triangulation of S is a triangulation of S such that the circumsphere of any simplex in $\mathcal{D}(S)$ does not contain any other point in S.

Delaunay Triangulation in Arbitrary Dimensions

- In \mathbb{R}^2 , Delaunay maximizes the minimum angle
- ▶ In ℝ³, it doesn't
- ▶ In \mathbb{R}^n , it minimizes the maximum *containment sphere*
- Number of tetrahedra in 3D Delaunay tetrahedralization

- ► O(n) : uniform volume
- ► O(n log n): uniform surface
- $O(n^2)$: worst case (two lines)

Sequential 3D Delaunay

Randomized insertion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Flipping
- Watson Method

Watson Method

Strategy

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Part 1: Split

1: if $n < N \lor r = \log P$ then 2: return sequentialDelaunay(**P**) 3: $k \leftarrow \text{splittingDimension}(\mathbf{P})$ 4: $(\mathbf{P}_1 \quad \mathbf{P}_2) = (p_1 \quad \cdots \quad p_s \mid p_{s+1} \quad \cdots \quad p_n) \leftarrow \text{divide}(\mathbf{P}, k)$ 5: $\mathbf{T} = (T_1 \quad T_2) \leftarrow (\text{Delaunay}(\mathbf{P}_1, r+1) \quad \text{Delaunay}(\mathbf{P}_2, r+1))$

- Constant
- Alternating
- Largest

Part 2: Finding Border Triangles

6:
$$\mathbf{B} \leftarrow \varnothing$$
; $\mathbf{Q} \leftarrow \text{convexHull}(T_1) \cup \text{convexHull}(T_2)$ \triangleright initialize
7: parfor $s_{i,x} \in \mathbf{Q}$ do \triangleright si
8: mark $(s_{i,x})$
9: if circumsphere $(s_{i,x}) \cap$ bounding $\text{Box}(T_j) \neq \varnothing$, with $i \neq j$ then
10: $\mathbf{B} \cup = \{s_{i,x}\}$ \triangleright circumsphere intersects oth
11: for $s_{i,y} \in$ neighbors $(s_{i,x}) \land \neg$ marked $(s_{i,y})$ do
12: $\mathbf{Q} \cup = s_{i,y}$; mark $(s_{i,y})$
13: $T_B \leftarrow$ Delaunay(vertices $(\mathbf{B}), r + 1$)

14:
$$T \leftarrow (T_1 \cup T_2) \setminus \mathbf{B}; \quad \mathbf{Q} \leftarrow \emptyset$$

15: **parfor** $s_b \in T_B$ **do**
16: **if** vertices $(s_b) \not\subset \mathbf{P}_1 \land vertices}(s_b) \not\subset \mathbf{P}_2$ **then**
17: $T \cup = \{s_b\}; \quad Q \cup = \{s_b\}$
18: **else**
19: **if** $\exists s \in \mathbf{B} : vertices(s) = vertices}(s_b)$ **then**
20: $T \cup = \{s_b\}; \quad Q \cup = \{s_b\}$

- Check for duplicates
 - Hash table of simplices
- Update Neighbors
 - Face hash table
 - Build during Part 2
- Merge Large Blocks
 - Binary Search Tree
 - O(log k) access after k merges

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Results

・ロト・4回ト・4回ト・4回ト・4回ト

Results

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Comparison Of Results

- Tested on 1 million uniformly distributed points (same dataset)
- Different output size depending on # of threads?
- Volume is wrong
- Intel E5-2699V3 (2014, 2.30 GHz, 18 cores), 32 GB RAM (nobody used this much)
- Very hard to find program (author has deleted published GitHub page)

	1 Core	16 Core
This Paper	233 s	42 s
CGAL	8 s	n/a
Tetgen	5 s	n/a

- Results?
 - Paper: 50,000,000 points in 64 seconds on 32 cores (24k pts/(sec cpu))
 - My result: 1,000,000 points in 42 seconds on 16 cores (1.4k pts/(sec cpu))

- Do we actually need Delaunay?
 - Delaunay algorithms are O(n log n)
 - Can get a "good" tetredralization in O(n) time...