
Main-Memory Hash Joins on Modern 
Processor Architectures

Paper by Balkesen, C. et al
6.886 Presentation Slides by Taylor Andrews



Presentation Agenda
● Part 1 

○ Background & Problem Motivation

○ Optimized sequential & parallel hash-join algorithms

● Part 2 
○ Experiments

○ Results

○ Discussion 

https://en.wikipedia.org/wiki/Relational_algebra#Joins_and_join-like_operators



Background: Join Operation
● Relational algebra operation (natural join: R ⋈ S)
● Focus on one algorithm family

○ “Main-memory hash-based” joins
○ Sequential and parallel variants

https://en.wikipedia.org/wiki/Relational_algebra#Joins_and_join-like_operators



Problem Motivation:
● Hash-based joins are common but computationally expensive
● The canonical sequential form:

https://en.wikipedia.org/wiki/Relational_algebra#Joins_and_join-like_operators

(smaller set)



No-Partition Join Alg. (Parallel Improvement)
● Makes use of P workers
● Divides the creation of shared hash table
● Still random memory access

BARRIER

“Latching” (locking)

(ideal)

(smaller set)



Partition Join Alg. (Parallel & Cache Improvement)
● Makes use of P workers
● Divides creation of cache-aligned hash tables
● Better cache efficiency 

BARRIER

(ideal)

(smaller set)



● Parallel, Cache & TLB improvements
● “Fan out” partitioning pass(es) dividing sub-problems among workers
● Calculates output memory ranges up front to avoid sync!
● Load distribution among threads by task queuing [6]

HW-Conscious Optimized Radix Join AlgORITHM

BARRIER

(ideal)

(smaller set)



Experiments: Software Used

● All various Debian Linux OS (gcc == icc)

● “Bucket chaining” > SIMD, used globally

● Two previous papers’ workloads “A” & “B” ([3] & [1])

● Assumed unsorted input (simulate worst case)

● All test sets R and S have foreign key relationship 
○ 1 join partner each



Experiments: (Diverse) Hardware Platforms Used 
● Standard Intel Machines 

○ 2 threads / core, shared 64-byte L3

● AMD Machine
○ 2 cores / module, shared instruction operations + FPU + L2

● Sun UltraSPARC T2 
○ 8 threads / core, shared 16-byte L1, shared 64-byte L2

● High-End Multi-Core (Oracle Sparc T4 and Intel E5-4640)
○ 4 socket, 8 cores / socket, 8 threads / core, shared 64-byte L3

● See Table 1



Results: Making Oblivious More Conscious (Tuned Hash Table)



Results: Making Oblivious More Conscious
● Aligning packed hash tables to avoid crossing cache lines
● Also tuned prefetching distance parameter
● Minimal returns from aligning alone (random access cost?)



Results: Making Oblivious More Conscious



Quick Aside: Hardware Performance Counters
● General purpose counters that count events of interest 

○ Event selection register
○ Various other control & overflow registers 

● Intel details
○ Hardware: Intel SDM Chapter 18 
○ Perf. Events: Intel SDM Chapter 19 



Results: Optimized Radix HW Performance Profile
● ~10x less 

instructions
● Less cache misses 

mostly improving 
build and probe

● Less TLB misses due 
to partitioning “fan 
out” pass(es)

● HW optimized radix 
performs best 
(except in a few 
cases)



Results: Optimized HW-Conscious Radix Improvements
● Tolerant across 

number of radix bits 

based on partition 

number (See Figure 8)

● Generally faster from 

hw-conscious 

optimization (packing 

and cache-aligning 

structs, TLB 

planning, avoiding 

calls and derefs)



Results: Final Rdx Optimization (BufferinG, Write Combining, & TLB Saving)



Results: No-Part. and Optimized Radix Input Sizes



Results: Radix Parallel Scalability



Three Hw-Conscious Optimized Radix 
Performance Outliers



Results: UltraSPARC T2 Niagara Performance Outlier 1
Figure 10



Results: Performance Outlier 1 (When Radix Is Slow)
● Oblivious N-partitioning faster than conscious radix
● UltraSPARC T2 Niagara 8kB virtual memory pages & fully 

associative TLB
● Extremely efficient thread synchronization

○ Performant ldstub instruction latch implementation



Results: Parallel Scalability Outlier 2
● Note black square and triangle 

similar perf despite 2x threads

○ Why? 

○ SMP not as effective due to 

lowered cache misses (less 

core idle time)

● See Figure 13 & 14 & 15



Results: Perf. Outlier 3 (More Radix Threads Slower)



Results: Perf. Outlier 3 Due To Sparc T4 Architecture 

● From https://www.slideshare.net/solarisyougood/sparc-t4-systems-customer-presentation

● Hardware supports 8 hardware threads 
using shared core resources 
(including cache space!)

● Actually induces higher cache misses
● Sometimes, “Less is more for 

hardware conscious [hash-join] 
algorithms” (Page 10)



Concluding Summary:
● HW-conscious, optimized radix maintains edge

○ Except on certain aggressive SMP hardware including low sync overhead
○ Except with enough core saturation to degrade SMP ability
○ Except when over-threading thrashes shared hardware caches

● Compared hash-join algorithms on real hardware
○ HW-oblivious n-partition through HW-conscious, optimized radix

● Optimized existing oblivious & conscious implementations
○ Packing and tuning the hash table structure
○ Pointer array indices avoiding calls and mem deref.

● Oblivious hash join algorithms can be competitive, but in 
special hardware circumstances



Related Work:
● Hash-join algorithm content origin, see [6] 

● Similar partitioning spirit for aggregation [23]
○ Different problem, similar hardware findings

● NUMA added complexity: “handshake-join” [24]

● Sort-merge algorithms leveraging sequential memory [4]

● GPU-based join leveraging hardware SMT idea [25]

● Cache oblivious design at the database level [26]



Thanks and Discussion 
● What could implementation look like for real databases?

○ Library?
○ Service?

● Can additional caching of join results be leveraged?
○ Storage vs. compute costs

● Which other hardware architecture is most interesting?
○ 8 way threading on 8 cores, in 4 sockets (Sparc T4)
○ 2 cores per module, shared instruction operations, FPU & L2 (AMD)
○ 8 way threading on 8 cores, smaller cache lines (Sparc T6)
○ Ideas for specialized use cases?

6.886 Presentation Slides by Taylor Andrews (tandrews@mit.edu)


