Multi-Core, Main-Memory Joins: Sort vs. Hash Revisited

Presenter: Haonan Wang

Slides Credit: CMU 15-721 Spring 2018

haonanw®@mit.edu

March 19, 2019

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 1/36

Overview

@ Background
@ Sort vs. Hash
@ Motivation

© Merge - Sort Join
@ The basic idea
@ Sort Phase
@ Merge Phase
o Multi-Way Merge

© Experiment

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 2 /36

Section 1

Background

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 3 /36

Subsection 1

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 4 /36

There are two main approaches for the PARALLEL JOIN ALGORITHMS:
— Hash Join
— Sort-Merge Join

History of Hash VS. Sort
@ 1970s Sorting
@ 1980s Hashing
1990s Equivalent
2000s Hashing
2010s Hashing (Partitioned vs. Non-Partitioned)
2020s 777

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 5/ 36

What Is Merge-Sort Join

Sort-merge join algorithm explained

Customers table Orders table
Id Login Id User id
2 User#2 1001 2
1 User#1 1002 4
4 User#d 1003 4
3 User#d 1004 1
¥ k. J
Id Login Id User id
1 User# 1004 1
2 User#2 1001 2
3 User#3 1002 4
4 User#d 1003 4

Sort vs Hash

SIMD?

What is SIMD?

A class of CPU instructions that allow the processor to perform the same
operation on multiple data points simultaneously.

Xl IV X1ty
4] V2 || X2t Y2

X) Y] [%0tVn

Both current AMD and Intel CPUs have ISA and microarchitecture
support SIMD operations.

— MMX, 3DNow!, SSE, SSE2, SSE3, SSE4, AVX

Presenter: Haonan Wang (MIT)

Sort vs Hash

March 19, 2019 7 /36

SIMD Makes Sorting Better Than Hashing?

SORT VS. HASH REVISITED: FAST ORACLE
RN eBR s ™)
VLDB 2009 ert/el

— Hashing is faster than Sort-Merge.
— Sort-Merge is faster w/ wider SIMD.

ORI)
\C%REE DATABASE SYSTEMS Hyper

— Sort-Merge is already faster than
Hashing, even without SIMD.
MAIN-MEMORY HASH JOINS ON

MULTI CORE CPUS: TUNING TO
UNDERLYING HARDWARE

Systems e ETHzirich

— New optimizations and results for
Radix Hash Join.

WISCONSIN

— Trade-offs between partitioning &
non-partitioning Hash-Join.

MASSIVELY PARALLEL NUMA-
AWARE HASH JOINS A HyPer
VMIDIVI 2 ~}

— Ignore what we said last year.
— You really want to use Hashing!

OF THIRTEEN RELATIONAL EQUI- Mum
JOINS IN MAIN MEMORY

SIGMOD 2016

AN EXPERIMENTAL COMPARISON B8 universitir
DES
““M SAARLANDES

— Hold up everyone! Let's look at
everything for real!

March 19, 2019

Presenter: Haonan Wang (MIT)

Sort vs Hash

Section 2

Merge - Sort Join

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 9 /36

The basic idea for the designing

e Partition Phase(Optional)
— Partition R and assign them to workers / cores.

@ Sort Phase
— Sort the tuples of R and S based on the join key.

@ Merge Phase
— Scan the sorted relations and compare tuples.
— The outer relation R only needs to be scanned once.

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 10 / 36

Subsection 2

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 11 / 36

Sorting Networks(1)

Input
9

Output

5

3

1
1

March 19, 2019

12/ 36

Sorting Networks(2)

Input
9

Ul

Output

!

Vo)

5

3

w

I
l

k]

(o)}

Presenter: Haonan Wang (MIT) Sort vs Hash

March 19, 2019

13/ 36

Sorting Networks(3)

Input
9

(9]

Output

O

5

3

!

w

=

1

Presenter: Haonan Wang (MIT)

Sort vs Hash

March 19, 2019

14 / 36

Sorting Networks(4)

Output

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 15 / 36

Sorting Networks(5)

Output

March 19, 2019

16 / 36

Sorting Networks(6)

Input Output

| |w]| |w»
o TR o B
b
_xm
(o))
v ¥ v Y
(o] (o)} Ul

March 19, 2019 17 / 36

Sorting Networks Summary(1)

e=min (a, b)
f =max (a, b)
g=min (c, d)
h=max (c, d)
i=max (e, g)
j=min (£, h)
w=min (e, g)
x=min (i, j)
y=max (i, j)
z=max (f, h)

Presenter: Haonan Wang (MIT)

Sort vs Hash

March 19, 2019

18 / 36

Sorting Networks Summary(2)

@ Always has fixed wiring paths for lists with the same number of
elements.

o Efficient to execute on modern CPUs because of limited data
dependencies and no branches.

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 19 / 36

Sorting Network Speed Up With SIMD(1)

12121] 4 |13
I 98|67
11141319

5(11]15|10

Instructions:
— 4 LOAD

March 19, 2019 20 / 36

Sorting Network Speed Up With SIMD(2)

11813]|09
I 511144 |7
91141 6 |10

12932131513

Instructions:
— 10 MIN/MAX

March 19, 2019 21 /36

Sorting Network Speed Up With SIMD(3)

1[5]9]12

| 8111]14121
- 3[4]6]15
0| 7]10]13

Instructions:
—> 8 SHUFFLE
— 4 STORE

March 19, 2019 22 /36

Subsection 3

Merge Phase

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 23 /36

Bitonic Merge Networks

Input

Sorted Run

Reverse @
Sorted Run

NEGIE MELLON
TABASE GROUP

> Sorted Run

CMU 1

Presenter: Haonan Wang (MIT)

Sort vs Hash

March 19, 2019 24 / 36

Merging Larger Lists using Bitonic Merge

Algorithm 1: Merging larger lists with help of bitonic
merge kernel bitonic_merged () (k =4).

1 a < fetch4 (in1); b « fetch4 (iny);
2 repeat

3 (a,b) < bitonic_merge4 (a, b);
4 emit a to output;

5 if head (in;) < head (iny) then
6 | a <« fetch4 (in1);

7

8

9

else
| a <« fetch4 (in2);

until eof (in1) or eof (in2);
10 (a,b) < bitonic_merge4 (a, b);
11 emit4 (a); emit4 (b);
12 if eof (in:) then
13 | emit rest of ins to output;

14 else
15 | emit rest of in1 to output;

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 25 / 36

Merging-Sort Tree

e L e e

| merge | | merge | | merge | ‘ merge | !

March 19, 2019 26 / 36

Merging-Sort Hierarchy(Summary)

@ in-register sorting, with runs that fit into (SIMD) CPU registers;
@ in-cache sorting, where runs can still be held in a CPU-local cache;

@ out-of-cache sorting, once runs exceed cache sizes.

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 27 / 36

Subsection 4

Multi-Way Merge

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 28 / 36

Impact Of Numa

@ In practice, at least some merging passes will inevitably cross NUMA
boundaries.

@ multisocket systems show an increasing asymmetry, where the NUMA
interconnect bandwidth stays further and further behind the
aggregate memory bandwidth that the individual memory controllers
could provide.

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 29 / 36

fA\ i
[local sort] !!

N7 L VN

|ll\,\

__

Figure 4: m-way: NUMA-aware sort-merge join
with multi-way merge and SIMD.

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 30/ 36

Section 3

Experiment

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 31/ 36

@ Intel Sandy Bridge with a 256-bit AVX instruction set.

@ Four-socket configuration, with each CPU socket containing 8
physical cores and 16 thread contexts by the help of the
hyper-threading.

o Cache sizes are 32 KiB for L1, 256 KiB for L2, and 20 MiB L3 (the
latter shared by the 16 threads within the socket).The cache line size
of the system is 64 bytes. TLB1 contains 64/32 entries when using 4
KiB/2 MiB pages (respectively) and 512 TLB2 entries (page size 4
KiB). Total memory available is 512 GiB (DDR3 at 1600 MHz).

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 32 /36

Scalability

E —& m-way -—@— M-pass —4— mpsm “315M/s:c"
& 288 +
w
5
& 44 7
s
5 721
2
=
3 364
2 18+
-
2
= 97
1
5 454
=
-
1 2 4 8 16 32 64

number of threads

Figure 13: Scalability of sorting-based joins. Work-
load A, (11.92 GiB X 11.92 GiB). Throughput metric
is output tuples per second, i.e. I5|/execution time.

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 33 /36

Result(1)

M partition [Isort O merge M mjoin [build-probe
g] 411ms 5062ms

4 = fr— 4255ms
6__ 15514ms

cycles per output tuple

mway rdr mway rdz mway rdr mwaey rdx

128M X 128M 1.6BX1.6B 128MX512M 1.6BX6.4B

join workloads in number of tuples

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019 34 /36

Result(2)

M partition [sort merge M mjoin M build [probe

15236ms

QL 22+ 1145ms

o

=) + 12992ms
+ 181

45

a 4

S 141

=4 1

o

5 10+

Q +
&

3 1

& 27

mway mpsm n-part rdz mway mpsm n-part rdx
128M X 128M 1.6BX 1.6B

algorithms / workloads in number of tuples

Figure 18: Sort vs. hash join comparison with ex-
tended set of algorithms. All using 64 threads.

Presenter: Haonan Wang (MIT) Sort vs Hash March 19, 2019

35 /36

The End

Haonan Wang (MIT) Sort vs Hash March 19, 2019 36 / 36

	Background
	Sort vs. Hash
	Motivation

	Merge - Sort Join
	The basic idea
	Sort Phase
	Merge Phase
	Multi-Way Merge

	Experiment

