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Section 1

Background
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Subsection 1
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There are two main approaches for the PARALLEL JOIN ALGORITHMS:
— Hash Join
— Sort-Merge Join

History of Hash VS. Sort
@ 1970s Sorting
@ 1980s Hashing
1990s Equivalent
2000s Hashing
2010s Hashing (Partitioned vs. Non-Partitioned)
2020s 777
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What Is Merge-Sort Join

Sort-merge join algorithm explained

Customers table Orders table
Id Login Id User id
2 User#2 1001 2
1 User#1 1002 4
4 User#d 1003 4
3 User#d 1004 1
¥ k. J
Id Login Id User id
1 User# 1004 1
2 User#2 1001 2
3 User#3 1002 4
4 User#d 1003 4
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SIMD?

What is SIMD?

A class of CPU instructions that allow the processor to perform the same
operation on multiple data points simultaneously.

Xl IV X1ty
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Both current AMD and Intel CPUs have ISA and microarchitecture
support SIMD operations.

— MMX, 3DNow!, SSE, SSE2, SSE3, SSE4, AVX
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SIMD Makes Sorting Better Than Hashing?

SORT VS. HASH REVISITED: FAST ORACLE
RN eBR s ™)
VLDB 2009 ert/el

— Hashing is faster than Sort-Merge.
— Sort-Merge is faster w/ wider SIMD.

ORI )
\C%REE DATABASE SYSTEMS Hyper

— Sort-Merge is already faster than
Hashing, even without SIMD.
MAIN-MEMORY HASH JOINS ON

MULTI CORE CPUS: TUNING TO
UNDERLYING HARDWARE

Systems e ETHzirich

— New optimizations and results for
Radix Hash Join.

WISCONSIN

— Trade-offs between partitioning &
non-partitioning Hash-Join.

MASSIVELY PARALLEL NUMA-
AWARE HASH JOINS A HyPer
VMIDIVI 2 ~}

— Ignore what we said last year.
— You really want to use Hashing!

OF THIRTEEN RELATIONAL EQUI- Mum
JOINS IN MAIN MEMORY

SIGMOD 2016

AN EXPERIMENTAL COMPARISON B8 universitir
DES
““M SAARLANDES

— Hold up everyone! Let's look at
everything for real!
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Section 2

Merge - Sort Join
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The basic idea for the designing

e Partition Phase(Optional)
— Partition R and assign them to workers / cores.

@ Sort Phase
— Sort the tuples of R and S based on the join key.

@ Merge Phase
— Scan the sorted relations and compare tuples.
— The outer relation R only needs to be scanned once.
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Subsection 2
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Sorting Networks(1)
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Sorting Networks(2)
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Sorting Networks(3)
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Sorting Networks(4)

Output
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Sorting Networks(5)
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Sorting Networks(6)
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Sorting Networks Summary(1)

e=min (a, b)
f =max (a, b)
g=min (c, d)
h=max (c, d)
i=max (e, g)
j=min (£, h)
w=min (e, g)
x=min (i, j)
y=max (i, j)
z=max (f, h)
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Sorting Networks Summary(2)

@ Always has fixed wiring paths for lists with the same number of
elements.

o Efficient to execute on modern CPUs because of limited data
dependencies and no branches.
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Sorting Network Speed Up With SIMD(1)
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Instructions:
— 4 LOAD
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Sorting Network Speed Up With SIMD(2)
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Instructions:
— 10 MIN/MAX
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Sorting Network Speed Up With SIMD(3)

1[5]9]12

| 8111]14121
- 3[4]6]15
0| 7]10]13

Instructions:
—> 8 SHUFFLE
— 4 STORE
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Subsection 3

Merge Phase
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Bitonic Merge Networks
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Merging Larger Lists using Bitonic Merge

Algorithm 1: Merging larger lists with help of bitonic
merge kernel bitonic_merged () (k =4).

1 a < fetch4 (in1); b « fetch4 (iny);
2 repeat

3 (a,b) < bitonic_merge4 (a, b);
4 emit a to output;

5 if head (in;) < head (iny) then
6 | a <« fetch4 (in1);

7

8

9

else
| a <« fetch4 (in2);

until eof (in1) or eof (in2);
10 (a,b) < bitonic_merge4 (a, b);
11 emit4 (a); emit4 (b);
12 if eof (in:) then
13 | emit rest of ins to output;

14 else
15 | emit rest of in1 to output;
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Merging-Sort Tree
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Merging-Sort Hierarchy(Summary)

@ in-register sorting, with runs that fit into (SIMD) CPU registers;
@ in-cache sorting, where runs can still be held in a CPU-local cache;

@ out-of-cache sorting, once runs exceed cache sizes.
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Subsection 4

Multi-Way Merge
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Impact Of Numa

@ In practice, at least some merging passes will inevitably cross NUMA
boundaries.

@ multisocket systems show an increasing asymmetry, where the NUMA
interconnect bandwidth stays further and further behind the
aggregate memory bandwidth that the individual memory controllers
could provide.
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Figure 4: m-way: NUMA-aware sort-merge join
with multi-way merge and SIMD.
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Section 3

Experiment
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@ Intel Sandy Bridge with a 256-bit AVX instruction set.

@ Four-socket configuration, with each CPU socket containing 8
physical cores and 16 thread contexts by the help of the
hyper-threading.

o Cache sizes are 32 KiB for L1, 256 KiB for L2, and 20 MiB L3 (the
latter shared by the 16 threads within the socket).The cache line size
of the system is 64 bytes. TLB1 contains 64/32 entries when using 4
KiB/2 MiB pages (respectively) and 512 TLB2 entries (page size 4
KiB). Total memory available is 512 GiB (DDR3 at 1600 MHz).
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Scalability
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Figure 13: Scalability of sorting-based joins. Work-
load A, (11.92 GiB X 11.92 GiB). Throughput metric
is output tuples per second, i.e. I5|/execution time.
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Result(1)

M partition [Isort O merge M mjoin  [build-probe
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Result(2)
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Figure 18: Sort vs. hash join comparison with ex-
tended set of algorithms. All using 64 threads.
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The End
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