
Yan Gu

Julian Shun

Yihan Sun

Guy Blelloch

Carnegie Mellon University

A Top-Down Parallel Semisort

What is semisort?

 Input:

 An array of records with associated keys

 Assume keys can be hashed to the range [𝑛𝑘]

Goal:

 All records with equal keys should be adjacent

key 45 12 45 61 28 61 61 45 28 45

Value 2 5 3 9 5 9 8 1 7 5

What is semisort?

 Input:

 An array of records with associated keys

 Assume keys can be hashed to the range [𝑛𝑘]

Goal:

 All records with equal keys should be adjacent

key 12 61 61 61 45 45 45 45 28 28

Value 5 8 9 9 2 5 1 3 7 5

What is semisort?

 Input:

 An array of records with associated keys

 Assume keys can be hashed to the range [𝑛𝑘]

Goal:

 All records with equal keys should be adjacent

 Different keys are not necessarily sorted

 Records with equal keys do not need to be sorted by

their values

key 45 45 45 45 12 61 61 61 28 28

Value 2 5 1 3 5 8 9 9 7 5

What is semisort?

 Input:

 An array of records with associated keys

 Assume keys can be hashed to the range [𝑛𝑘]

Goal:

 All records with equal keys should be adjacent

 Different keys are not necessarily sorted

 Records with equal keys do not need to be sorted by

their values

key 45 45 45 45 12 61 61 61 28 28

Value 1 5 3 2 5 8 9 9 7 5

Why is parallel semisort important?

 The simulation of PRAM model – concurrent write

[Valiant 1990]

 Key: memory addresses

 Value: operations

Thread
Concurrent

writes
Thread

Sorted

operations
Result

1 a[3]=71 4 a[3]=10

a[3]=712 a[1]=99 1 a[3]=71

3 a[2]=19 6 a[3]=12

4 a[3]=10 5 a[5]=50 a[5]=50

5 a[5]=50 7 a[1]=16
a[1]=99

6 a[3]=12 2 a[1]=99

7 a[1]=16 3 a[2]=19 a[2]=19

Why is parallel semisort important?

 The map-(semisort-)reduce paradigm

Map
Shuffle

(Semisort) Reduce

Why is parallel semisort important?

 The map-(semisort-)reduce paradigm

 Generate adjacency array for a graph

Edge list
Sorted edge

list

(3,5) (3,5)

(1,7) (3,7)

(2,3) (3,6)

(3,6) (5,4)

(5,4) (1,6)

(3,7) (1,7)

(1,6) (2,3)

1

2

3
4

5

6

7

Why is parallel semisort important?

 The map-(semisort-)reduce paradigm

 Generate adjacency array for a graph

 Other applications:

 In database, the relational join operation

 Gather words that differ by a deletion in edit-distance

application

 Collect shared edges based on endpoints in Delaunay

triangulation

 Etc.

Attempts – Sequentially

Hash Table With Open Addressing

 Problem:

 Maintaining linked lists in parallel can be hard

keys 37 … 58 … 92 …

12

9

52

92 56

11

19

8

key value

Linked

lists of

values

56

Attempts – Sequentially

Pre-allocated array

12

9

52

92 56

11

19

8

44

31

56

keys 37 … 58 … 92 …

key value
Arrays

of

values

Attempts - Parallelized

Pre-allocated array

keys 37 … 58 … 92 …

Arrays

of

values

 Problem

 Need to pre-count the number of each key

58 17

92 56
58 9key value

key value
key value

17

56

937 90

key value

90

Attempts – In parallel

 Comparison-based sort

 𝑂(nlog 𝑛) work

 Not work-efficient

 Radix-sort (probably the best work-efficient option

previously)

 𝑂(𝑛𝜖) depth

 Not highly-parallelized

☹

☹

 R&R integer sort [Rajasekaran and Reif 1989]: sort 𝑛
records with keys in the range [𝑛] in 𝑂(𝑛) work and

𝑂 log 𝑛 depth

 Linear work and logarithmic depth

 Should map keys to range [𝑛]

 Too much global data movement – practically inefficient

 Hashing and packing – 1 time

 Random radix sort – 1 time

 Deterministic radix sort – 2 times

Attempts – In parallel

☹

 Theoretically efficient:

 Linear work

 Logarithmic depth

 Practically efficient:

 Less data communication

 Cache-friendly

 Space efficient:

 Linear space

How to design an efficient semisort?

Our Top-Down Parallel Semisort

Algorithm

 Once the count of each key is known, we can pre-

allocate an array for each key

 The exact number is hard to compute - estimate the

upper bound by sampling

 Those appearing many times: we could make

reasonable estimations from the sample

 Those with few samples: hard to estimate precisely

 Solution: Treat “heavy” keys and “light” keys

differently

Key insight:

estimate key count from samples

 1. Select a sample 𝑆 of keys and sort it
 Sample rate Θ(1/ log 𝑛)

 2. Partition 𝑆 into heavy keys and light keys
 Heavy: appears = Ω(log 𝑛) times; will be assigned an individual bucket

 Light: appears = 𝑂 log 𝑛 times. We evenly partition the hash range to
𝑛/ log2 𝑛 buckets for them

 3. Scatter each record into its associated bucket
 The only global data communication

 4. Semisort light key buckets
 Performed locally

 5. Pack and output

Our parallel semisort algorithm

Heavy vs. Light…Why?

 [Rajasekaran and Reif 1989]If the records are sampled

with probability 𝑝 = 1/ log 𝑛, and for a key 𝑖 which

appears 𝑎𝑖 times in the original array, and 𝒄𝒊 times in the

sample:

 𝑐𝑖 = Ω(log 𝑛) , then 𝑎𝑖 = Θ 𝑐𝑖 log 𝑛 w.h.p.

 𝑐𝑖 = 𝑂(log 𝑛) , then 𝑎𝑖 = 𝑂 log2 𝑛 w.h.p.

(Can be proved using Chernoff bounds)

Estimate upper bounds for the counts 𝒂𝒊

 Key insight: if the records are sampled with probability

𝑝 = 1/ log 𝑛, and key 𝑖 has:

 𝑐𝑖 = Ω(log 𝑛) samples, then 𝑎𝑖 = Θ 𝑐𝑖 log 𝑛 w.h.p.

 𝑐𝑖 = 𝑂(log 𝑛) samples, then 𝑎𝑖 = 𝑂 log2 𝑛 w.h.p.

 𝑢𝑖 = 𝑐′ max(log
2 𝑛 , 𝑐𝑖 log 𝑛)

 𝑐′ is a sufficiently large constant to provide the high probability

bound

Estimate upper bounds for the counts 𝒂𝒊

 Key insight: if the records are sampled with probability

𝑝 = 1/ log 𝑛, and key 𝑖 has:

 𝑐𝑖 = Ω(log 𝑛) samples, then 𝑎𝑖 = Θ 𝑐𝑖 log 𝑛 w.h.p.

 𝑐𝑖 = 𝑂(log 𝑛) samples, then 𝑎𝑖 = 𝑂 log2 𝑛 w.h.p.

 Extreme case: all samples are of the same key

 𝑐𝑖 =
𝑛

log 𝑛
⇒ 𝑢𝑖 = 𝑂(𝑛)

 𝑐𝑖 = 0 ⇒ 𝑢𝑖 = 𝑂(log
2 𝑛)

 Require keys to be in range [𝑛/ log2 𝑛]

 Solution: combine light keys

 evenly partition the hash range to 𝑛/ log2 𝑛 intervals as buckets

Phase 1: Sampling and sorting

……

5 5 5 8 8 8 8 8 17 17 ……11 17

1. Select a sample 𝑆 of keys with probability 𝑝 = Θ(1/ log 𝑛)
2. Sort 𝑆

……S

Sampling

(Counting)

Sorting

Phase 2: Array Construction

5 5 5 8 8 8 8 8 17 17 ……11 17

Counting

&

Filtering

keys 8 20 65 …

Range 0-15 16-31

keys 5 11 17 21 26 31 ...

Heavy keys
Light keys

Sorted samples:

Phase 2: Array Construction

Heavy Keys

keys 𝑘1 𝑘2 𝑘3 …

samples 𝑐1 𝑐2 𝑐3 …

Array

length
𝑓(𝑐1) 𝑓(𝑐2) 𝑓(𝑐3) …

Light Keys

keys 𝑘′1 𝑘′2 𝑘′3 𝑘′4 𝑘′5 𝑘′6 𝑘′7 𝑘′8 𝑘′9 …

samples 𝑐′1 𝑐′2 𝑐′3 𝑐′4 𝑐′5 𝑐′6 𝑐′7 𝑐′8 𝑐′9 …

Array

length
𝑓(𝑐′1 + 𝑐′2) 𝑓(𝑐′3 +⋯+ 𝑐′6) 𝑓(𝑐′7 + 𝑐′8 + 𝑐′9) …

Phase 3: Scattering

× × × × × × × × × × × × × × ×

× × × × × × × × × × × × × × ×

Conflict!

Light keys

Heavy keys

× × × × × × ×

× × × × × × ×

× × × × × × × × × ×

Phase 4: Local sort

Phase 5: Packing

Size Estimation for Arrays

- High Probability
 Now consider an array that has 𝑠 samples. We define

the following size-estimation function:

where 𝑝 = Θ
1

log 𝑛
is the sampling probability and 𝑐 is a

constant, to be an upper bound of the size of the array

 Lemma 1: If there are 𝑠 samples of an array, the

probability that number of records is more than 𝑓(𝑠) is at

most 𝑛−𝑐

𝒇 𝒔 = 𝒔 + 𝒄 𝒍𝒏 𝒏 + 𝒄𝟐 𝒍𝒏𝟐 𝒏 + 𝟐𝒔𝒄 𝒍𝒏𝒏 /𝒑

Size estimation for arrays

- Linear Space in Expectation

 Lemma 1: If there are 𝑠 samples of an array, the

probability that number of records is more than 𝑓(𝑠) is at

most 𝑛−𝑐

 Corollary 1: The probability that 𝑓 gives an upper bound

on all buckets is at least 1 − 𝑛−𝑐+1/log2𝑛

 Lemma 2: 𝒊𝒇 𝒔𝒊 = 𝚯 𝒏 holds in expectation

𝒇 𝒔 = 𝒔 + 𝒄 𝒍𝒏𝒏 + 𝒄𝟐 𝒍𝒏𝟐 𝒏 + 𝟐𝒔𝒄 𝒍𝒏𝒏 /𝒑

 R&R algorithm:

 Preprocessing: hashing and packing – global data movement

 Three times bottom-up radix sort – global data movement

 Our parallel semisort:

 Sample and sort – on a small set

 Bucket construction – more about calculations

 Scatter: the only global data communication

 Local sort: performed locally

 Pack: performed locally

Comparison with R&R integer sort

Experiments

Experimental setup

 Experiments are run on a 40-core (with 2-way HT, 40h)

machine with 2.4GHz Intel 10-core E7-8879 Xeon

processors, with a 1066MHz bus and 30MB L3 cache

 Our code are compiled with g++ 4.8.0 with –O2 flag,

and parallelized with Cilk+, which is supported by g++

 We use parallel hash table with linear probing [Shun

and Blelloch 2014]

 We compare to the parallel STL sort [Singler et al.

2007], parallel radix sort and sample sort from Problem

Based Benchmark Suite [Shun et al. 2012]

The parallel semisort algorithm

Notation Value

Array length 𝑛 107 − 109

Hashed key

range
𝑛𝑘 263

Sample rate 𝑝 = Θ
1

log 𝑛

1

16

Threshold to

distinguish

heavy keys from

light keys

Ω(log 𝑛) 16

buckets for

light key
Θ

𝑛

log2 𝑛
216

Input distribution

Uniform distribution (parameter: 𝑚. range of

integers are from 𝑚)

Exponential distribution (parameter: 𝜆. mean

1/𝜆, variance 1/𝜆2)

Exponential distribution

Input distribution

 The different distributions and parameters are used to

control the ratio of heavy keys.

 Uniform distribution (parameter: 𝑚. range of integers

are from 𝑚)

 Exponential distribution (parameter: 𝜆. mean 1/𝜆,

variance 1/𝜆2)

 Two representative distributions:

 Uniform distribution with m = 𝑛 (0% heavy keys)

 Exponential distribution with 𝜆 = 𝑛/1000 (70-80% heavy keys)

Efficiency & Scalability
Our parallel semisort outperforms STL sort,

sample sort and radix sort.

Records per second Parallel speedup

 Number of threads: 40 cores with hyperthreading

 Array length: 108

 Distribution: exponential

Efficiency & Scalability with input size
Our parallel semisort outperforms STL sort, sample

sort and radix sort.

Records per second Parallel speedup

 Number of threads: 40 cores with hyperthreading

 Array length: 108

 Distribution: uniform

Parallel Performance

Linear speedup
 PBBS radix sort [Shun et al 2012]

 Radix sort proposed in [Polychroniou and Ross 2014]

 Crashed on exponential distribution

Uniform Distribution

PBBS

Parallel performance

Linear speedup
 We show the running time of our algorithm and the radix sort with

varying number of threads

 The input contains 108 records

Exponential Distribution
(40 cores with

hyperthreading)

PBBS

2x

Breakdown of running time

Exponential Uniform

 We also have more experiments on testing the

stability with different distributions

 Three different distributions

 17 cases in total

 We refer you to our paper to see the details.

Other experiments -

The stabability

Conclusion

Conclusion

 We introduced a parallel algorithm for semisorting

that is:

 Theoretically efficient: requires linear work and

space, and logarithmic depth.

 Practically efficient: achieves good parallel

speedup on various input distributions and input

size, and outperforms a similarly-optimized radix

sort and other commonly-used sorts.

Thank you.

