A Top-Down Parallel Semisort

Yan Gu
Julian Shun
Yihan Sun
Guy Blelloch

Carnegie Mellon University

What I1s semisort?

key

Value

Input:

45

12

45

61

28

61

61

45

28

45

2

5

3

9

An array of records with associated keys
Assume keys can be hashed to the range [n”]

Goal:

All records with equal keys should be adjacent

What I1s semisort?

key

Value

Input:

12

61

61

61

45

45

45

45

28

28

5

8

9

9

An array of records with associated keys
Assume keys can be hashed to the range [n”]

Goal:

All records with equal keys should be adjacent

What I1s semisort?

key

Value

Input:

45

45

45

45

12

61

61

61

28

28

2

5

1

3

An array of records with associated keys
Assume keys can be hashed to the range [n”]

Goal:

All records with equal keys should be adjacent
Different keys are not necessarily sorted

Records with equal keys do not need to be sorted by
their values

What I1s semisort?

key

Value

Input:

45

45

45

45

12

61

61

61

28

28

1

5

3

2

An array of records with associated keys
Assume keys can be hashed to the range [n”]

Goal:

All records with equal keys should be adjacent
Different keys are not necessarily sorted

Records with equal keys do not need to be sorted by
their values

Why Is parallel semisort important?

The simulation of PRAM model — concurrent write
[Valiant 1990]

Key: memory addresses

Value: operations

Concurrent Sorted

Thread : Thread : Result
writes operations
1 a[3]=71 4 a[3]=10
2 a[1]=99 1 a[3]=71 a[3]=71
3 a[2]=19 6 a[3]=12
4 a[3]=10 Z> 5 a[5]=50 a[5]=50
5 a[5]=50 7 a[1]=16
a[1]=99
6 a[3]=12 2 a[1]=99
7 a[1]=16 3 a[2]=19 a[2]=19

Why Is parallel semisort important?

o The map-(semisort-)reduce paradigm

Shuffle

(Semisort) Reduce

Map

Why Is parallel semisort important?
o The map-(semisort-)reduce paradigm

o Generate adjacency array for a graph

Sorted edge

Edge list list

I

Why Is parallel semisort important?

The map-(semisort-)reduce paradigm
Generate adjacency array for a graph

Other applications:
In database, the relational join operation
Gather words that differ by a deletion in edit-distance
application
Collect shared edges based on endpoints in Delaunay
triangulation

Etc.

Attempts — Sequentially
Hash Table With Open Addressing

/ N
92 | 56 keys | 37 58 92
key value v v K
Linked | 12 I 11 | 8 |
lists of
values & ; &
9 I 19 56
52

Problem:
Maintaining linked lists in parallel can be hard

Attempts — Sequentially

Pre-allocated array

-~

92

56

key value

52

19

—

keys | 37 58 92
Arrays ‘1' ‘1' —‘L—
of 12 11 8
values

Attempts - Parallelized
Pre-allocated array

keys | 37 58 92
Arrays ‘1' ‘L JL
of — 56
values —_ 17
—> 90
37 | 90 9 |€&—
key value
58 | 17
key value 58 | 9
92 | o6 key value
Problem key value

Need to pre-count the number of each key

Attempts — In parallel

Comparison-based sort
O (nlogn) work
Not work-efficient

©

Radix-sort (probably the best work-efficient option
previously)

0 (n®) depth

Not highly-parallelized

©

Attempts — In parallel

R&R integer sort [Rajasekaran and Reif 1989]. sort n
records with keys in the range [n] in O(n) work and
O (log n) depth

Linear work and logarithmic depth

Should map keys to range [n]

Too much global data movement — practically inefficient
Hashing and packing — 1 time
Random radix sort — 1 time
Deterministic radix sort — 2 times

©

How to design an efficient semisort?

Theoretically efficient:
Linear work
Logarithmic depth

Practically efficient:
Less data communication
Cache-friendly

Space efficient:
Linear space

Our Top-Down Parallel Semisort
Algorithm

Key insight:
estimate key count from samples

Once the count of each key is known, we can pre-
allocate an array for each key

The exact number is hard to compute - estimate the
upper bound by sampling

Those appearing many times: we could make
reasonable estimations from the sample

Those with few samples: hard to estimate precisely

Solution: Treat “heavy” keys and “light” keys
differently

Our parallel semisort algorithm

o 1. Select a sample S of keys and sort it
» Sample rate ©(1/logn)

o 2. Partition S into heavy keys and light keys
» Heavy: appears = Q(logn) times; will be assigned an individual bucket

» Light: appears = 0(logn) times. We evenly partition the hash range to
n/log? n buckets for them

o 3. Scatter each record into its associated bucket
» The only global data communication

o 4. Semisort light key buckets
» Performed locally

o 5. Pack and output

Heavy vs. Light...Why?

[Rajasekaran and Reif 1989]If the records are sampled
with probability p = 1/logn, and for a key i which
appears a; times in the original array, and c; times in the
sample:

c; = Q(logn) , then a; = 0(c¢;logn) w.h.p.
¢; = 0(logn) , then a; = 0(log?n) w.h.p.
(Can be proved using Chernoff bounds)

Estimate upper bounds for the counts a;

Key insight: if the records are sampled with probability
p = 1/logn, and key i has:

c; = Q(logn) samples, then a; = 0(c; logn) w.h.p.

¢; = 0(logn) samples, then a; = 0(log?n) w.h.p.

u; = ¢’ max(log?n, c;logn)
¢’ is a sufficiently large constant to provide the high probability
bound

Estimate upper bounds for the counts a;

Key insight: if the records are sampled with probability
p = 1/logn, and key i has:

c; = Q(logn) samples, then a; = 0(c; logn) w.h.p.

¢; = 0(logn) samples, then a; = 0(log?n) w.h.p.

Extreme case: all samples are of the same key

n
Ci = Togm = u; = 0(n)

;=0 = u; = 0(log?n)
Require keys to be in range [n/log” n]

Solution: combine light keys
evenly partition the hash range to n/log? n intervals as buckets

Phase 1: Sampling and sorting

1. Select a sample S of keys with probability p = ©(1/logn)
2.5ort S

/ / \ Sampling
S : * T eeene
O Sorting
515|15|8|8|8|8 |8 (1117|1717

(Counting)

Phase 2: Array Construction

>S5|5|5(8|8[|8|8|8(11|17|17]|17/

Light keys
/eavy keys ’ }\

Range 0-15 16-31
keys | 8 20 65 ... keys 5 |11 |17 21 26 |31

BEE i i

Phase 2: Array Construction

Heavy Keys
keys ke |k, | ki
samples o) Cy C3
Array
length
Light Keys
! !/ ! !/ ! ! !/ ! !/
keys | kK, kK, k. k. ks k. Kk, ks | ko
#samples | (¢, c, | c's | ¢y s g 5 | g | (g
|_'_’ \ . J |_'_I

Array
length

Phase 3: Scattering

. Light keys 47
_BF F BRE B F
o

X

LY
Conflict Heavy keys

Phase 4: Local sort
1

. E

Phase 5: Packing
I

l

Size Estimation for Arrays
- High Probability

Now consider an array that has s samples. We define
the following size-estimation function:

f(s) = (s+clnn+\/c2 ln2n+Zsclnn)/p

where p = @(-) IS the sampling probability and c is a

logn
constant, to be an upper bound of the size of the array

Lemma 1: If there are s samples of an array, the
probability that number of records is more than f(s) is at
most n™°¢

Size estimation for arrays
- Linear Space Iin Expectation

f(s) = (s +clnn++/c2In?n+ 2sc lnn) /P

Lemma 1: If there are s samples of an array, the
probability that number of records is more than f(s) Is at
most n™°¢

Corollary 1: The probability that f gives an upper bound
on all buckets is at least 1 — n=¢*1/log?n

Lemma 2:);; f(s;) = O(n) holds in expectation

Comparison with R&R integer sort

R&R algorithm:

Preprocessing: hashing and packing — global data movement
Three times bottom-up radix sort — global data movement

Our parallel semisort:
Sample and sort — on a small set
Bucket construction — more about calculations
Scatter: the only global data communication
Local sort: performed locally
Pack: performed locally

Experiments

Experimental setup

Experiments are run on a 40-core (with 2-way HT, 40h)
machine with 2.4GHz Intel 10-core E7-8879 Xeon
processors, with a 1066MHz bus and 30MB L3 cache

Our code are compiled with g++ 4.8.0 with -02 flag,
and parallelized with Cilk+, which is supported by g++

We use parallel hash table with linear probing [Shun
and Blelloch 2014]

We compare to the parallel STL sort [Singler et al.
2007], parallel radix sort and sample sort from Problem
Based Benchmark Suite [Shun et al. 2012]

The parallel semisort algorithm

Notation Value
Array length n 107 — 10°
Hashed key K 563
range
S I t =0 L 1
ample rate p = log T
Threshold to
distinguish
heavy keys from {(logn) 16
light keys
buckets for 0 n)16
light key log? n

Input distribution

Uniform distribution (parameter: m. range of
integers are from [m])

Exponential distribution (parameter: A. mean
1/4, variance 1/1%)

0.1

\ \ \ \
A=0.1 ——
A=0.05 —
A=0.02

0.09
0.08
0.07
0.06 -
0.05 -

P(x)

0.04 -
0.03 [

0.02 =

R

10 20 30 40 50 60 70 80 90 100

Exponential distribution

Input distribution

The different distributions and parameters are used to
control the ratio of heavy keys.

Uniform distribution (parameter: m. range of integers
are from [m])

Exponential distribution (parameter: 4. mean 1/4,
variance 1/1%)

Two representative distributions:
Uniform distribution with m = n (0% heavy keys)
Exponential distribution with A = n/1000 (70-80% heavy keys)

Records per second (million)

Efficiency & Scalability

Our parallel semisort outperforms STL sort,

sample sort and radix sort.

300

250 | -

200 -

Number of threads: 40 cores with hyperthreading
Array length: 108
Distribution: exponential

T T
- Parallel Semisort
-3 STL Sort

H- Radix Sort

-E}- Sample Sort

13:] r--.---u-.-.-.-..

*0O
¥

20 50 100 200 500

Irput size (millicn)

Records per second

1000

Speedlp

T T
e Parallel Semisort
-3 STL Sort
¥ Radix Sort

-} Sample Sort +

20 30 100 200 00

Irput size (million)

Parallel speedup

1000

Records per second (million)

Efficiency & Scalability with input size
Our parallel semisort outperforms STL sort, sample
sort and radix sort.

Number of threads: 40 cores with hyperthreading
Array length: 108
Distribution: uniform

300 T T T T T ! . T
wesfers Parallel Semnisort = Parallel Semisort

25 | -3¢ Radix Sort — 0L -3+ Radix Sort
-} Sample Sort 4 =k Sample Sort

5
+=

SpeadLp

lml;mﬂg

o
T

1C0x %***

10 20 50 100 200 =00 1000 10 20 50 100 200 500

Input size (million) Irnput size (million)

Records per second Parallel speedup

1000

Parallel Performance

Linear speedup
PBBS radix sort [Shun et al 2012]

32 I | T T I
Parallel semisort =+

16 PBBS Radix sort —>¢— -
%“ Linear speedup
C 8 =
Q
g
Mo 4 —
Q
E
Ch 2 B
£
&

0.5

0.25
1 2 4 8 16 32 40 40h

Number of threads

Uniform Distribution

Radix sort proposed in [Polychroniou and Ross 2014]
Crashed on exponential distribution

Parallel performance
Linear speedup

We show the running time of our algorithm and the radix sort with
varying number of threads

The input contains 108 records

32 I 1

Parallel semisort =+
16 4 PBBS Radix sort =& -
Linear speedup

™
E i
5 8
&
[l 4 —]
&€
E
o> 2]
£
£ 1 3
5
o’
0.5 ~
~
0.25 | | | | L
1 2 4 8 16 32 40 40h

Number of threads
(40 cores with

Exponential Distribution hyperthreading)

Breakdown of running time

_qé 100 - | B . Sample and sort . 100 - | B . """"")
= Array construction 80 - | i
E 80 - Scatter
c Local Sort 60 —— B -
2 60 -7 Pack mmmm
8 40 —— N 40 e SO
&
§ 20 -~ . 20 - - -
o 0 - o]
o & & 2
%,
.
/4

Exponential Uniform

Other experiments -
The stabability

We also have more experiments on testing the
stability with different distributions

Three different distributions
17 cases in total

We refer you to our paper to see the details.

Conclusion

Conclusion

We introduced a parallel algorithm for semisorting
that is:

Theoretically efficient: requires linear work and
space, and logarithmic depth.

Practically efficient: achieves good parallel
speedup on various input distributions and input
size, and outperforms a similarly-optimized radix
sort and other commonly-used sorts.

Thank you.

