
CACHE-EFFICIENT AGGREGATION:

HASHING IS SORTING

Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, Franz Färber

Presented by Divya Gopinath

6.886 Spring 2019

AGENDA

• Motivation

• Duality of hashing and sorting

• Efficient hashing and sorting primitives

• Design and analysis of aggregation algorithm

• Implementation and optimization of algorithm

• Evaluation and benchmarking

• Discussion

2

AGENDA

• Motivation

• Duality of hashing and sorting

• Efficient hashing and sorting primitives

• Design and analysis of aggregation algorithm

• Implementation and optimization of algorithm

• Evaluation and benchmarking

• Discussion

3

MOTIVATION

• Processing power of multi-core CPUs increasing at a faster rate than memory

bandwidth → I/O complexity is key

• Relational database operators are expensive, and aggregation in particular

• Limiting factor is movement of data

• Originally designed to reduce number of disk accesses, main memory accesses

considered free

• Now, move one level up hierarchy to the cache

SELECT column_name(s)
FROM table_name
WHERE condition
GROUP BY column_name(s)

4

HASHAGGREGATION

• Insert input rows into hash table with

grouping attributes as keys

• Aggregate remaining attributes in-place

Use when number of groups is small

because output will fit in the cache,

and provides early aggregation.

5

HASHING / SORTING: UNOPTIMIZED

col1 col2

1 3

2 4

1 2

2 5

group_key = h(col1) sum(col2)

h(1) 3+2

h(2) 4+5

• Sorts the rows by grouping attributes

• Aggregates consecutive rows of each

group

Use when number of groups is large

as hashing isn’t as efficient then, but

aggregation at later stage.

SORTAGGREGATION

6

HASHING / SORTING: UNOPTIMIZED

col1 col2

1 3

2 4

1 2

2 5

sort(col1) col2

1 3

1 2

2 4

2 5

CLAIM: HASHING IS SORTING

Can we optimize hashing/sorting such that cache line transfers are

comparable between the two?

7

Observation 1 : hashing is equivalent to sorting by hash value

Intermediate results from hashing can be processed by sorting routine

Hashing makes key domain more dense– an easier sorting problem!

CLAIM: HASHING IS SORTING

Can we optimize hashing/sorting such that cache line transfers are

comparable between the two?

8

Observation 1 : hashing is equivalent to sorting by hash value

Intermediate results from hashing can be processed by sorting routine

Hashing makes key domain more dense– an easier sorting problem!

Observation 2 : hashing allows us to perform early aggregation

Many repeated keys in distribution? Hash.

Few repeated keys? Sort.

AGENDA

• Motivation

• Duality of hashing and sorting

• Efficient hashing and sorting primitives

• Design and analysis of aggregation algorithm

• Implementation and optimization of algorithm

• Evaluation and benchmarking

• Discussion

9

CLAIM: HASHING IS SORTING
IN TERMS OF CACHE COMPLEXITY

External memory model:

• N = number of input rows

• K = number of groups in the input

• M = number of rows fitting into cache

• B = number of rows per single cache line

10

SORT-BASED AGGREGATION

Use bucket sorting to recursively

partition and sort input.

11

We sort each cache line for free before writing, so

number of leaves:

𝑙 =
𝑁

𝐵

SORT-BASED AGGREGATION

Use bucket sorting to recursively

partition and sort input.

12

We sort each cache line for free before writing, so

number of leaves:

𝑙 =
𝑁

𝐵
Number of partitions limited by number of buffers

that fit into cache, so degree of tree is
𝑀

𝐵

ℎ = log𝑀
𝐵

𝑁

𝐵

SORT-BASED AGGREGATION

Use bucket sorting to recursively

partition and sort input.

13

We sort each cache line for free before writing, so

number of leaves:

𝑙 =
𝑁

𝐵
Number of partitions limited by number of buffers

that fit into cache, so degree of tree is
𝑀

𝐵

ℎ = log𝑀
𝐵

𝑁

𝐵

Input read and written once per level, and one

additional pass to read the input and write the output

once, so overall cost:

2
𝑁

𝐵
log𝑀/𝐵

𝑁

𝐵
+

𝑁

𝐵
+

𝐾

𝐵

SORT-BASED AGGREGATION

Use bucket sorting to recursively

partition and sort input.

14

We sort each cache line for free before writing, so

number of leaves:

𝑙 =
𝑁

𝐵
Number of partitions limited by number of buffers

that fit into cache, so degree of tree is
𝑀

𝐵

ℎ = log𝑀
𝐵

𝑁

𝐵

Input read and written once per level, and one

additional pass to read the input and write the output

once, so overall cost:

2
𝑁

𝐵
log𝑀/𝐵

𝑁

𝐵
+

𝑁

𝐵
+

𝐾

𝐵

In cases where 𝐾 < 𝑁, keys form a multiset and

recursion stops early, cost slightly lower:

2
𝑁

𝐵
log𝑀/𝐵min

𝑁

𝐵
, 𝐾 +

𝑁

𝐵
+

𝐾

𝐵

This is a lowerbound for multiset sorting.

Our current cost:

2
𝑁

𝐵
log𝑀/𝐵min

𝑁

𝐵
, 𝐾 +

𝑁

𝐵
+

𝐾

𝐵

Lastly, merge last bucket sort pass with final

aggregation pass…

• Eliminates one pass over entire data

• Hold 𝑀 partitions instead of 𝑀/𝐵
• Only 𝐾/𝐵 leaves in the call tree

• Intermediate results must be O(1), which is true

for SUM, COUNT, MIN, MAX, AVG

Total cost:

2
𝑁

𝐵
log𝑀/𝐵

𝐾

𝐵
− 1 +

𝑁

𝐵
+

𝐾

𝐵

If 𝐾 < 𝑀, algorithm reads data once and calculates

result in cache.

SORT-BASED AGGREGATION

Use bucket sorting to recursively

partition and sort input.

15

HASH-BASED
AGGREGATION

Hash rows based on attribute we

are trying to group by.

16

We need to write 𝐾/𝐵 cache lines for result, and read

𝑁/𝐵 to read input, so long as 𝐾 < 𝑀. Cost:

𝑁

𝐵
+

𝐾

𝐵
, 𝐾 < 𝑀

2 1 −
𝑀

𝐾
𝑁, 𝑜. 𝑤.

HASH-BASED
AGGREGATION

Hash rows based on attribute we

are trying to group by.

17

We need to write 𝐾/𝐵 cache lines for result, and read

𝑁/𝐵 to read input, so long as 𝐾 < 𝑀. Cost:

𝑁

𝐵
+

𝐾

𝐵
, 𝐾 < 𝑀

2 1 −
𝑀

𝐾
𝑁, 𝑜. 𝑤.

Problem: when cache is full, there’s a cache miss for

almost every input row!

Optimization: partition input and recursively call

procedure (each partition reduces 𝐾). Now, same

number of cache-line transfers as sorting:

2
𝑁

𝐵
log𝑀/𝐵

𝐾

𝐵
− 1 +

𝑁

𝐵
+

𝐾

𝐵

AGENDA

• Motivation

• Duality of hashing and sorting

• Efficient hashing and sorting primitives

• Design and analysis of aggregation algorithm

• Implementation and optimization of algorithm

• Evaluation and benchmarking

• Discussion

18

COMBINING THE TWO…

19

Both sort-based and hash-based aggregations use

partition as a subroutine:

• Partition based on keys of groups

• Partition based on hash value

• Process of building up a hash table also partitions input

by hash value!

COMBINING THE TWO…

20

Both sort-based and hash-based aggregations use

partition as a subroutine:

• Partition based on keys of groups

• Partition based on hash value

• Process of building up a hash table also partitions input

by hash value!

PARTITIONING: one run per partition produced

HASHING: every full hash table split into one run per

partition

COMBINING THE TWO…

21

Both sort-based and hash-based aggregations use

partition as a subroutine:

• Partition based on keys of groups

• Partition based on hash value

• Process of building up a hash table also partitions input

by hash value!

PARTITIONING: one run per partition produced

HASHING: every full hash table split into one run per

partition

• Hash values are partition criterion

• Hashing enables early aggregation (helps in case of

locality of groups)

• In absence of locality, use general partitioning

• Similar to a radix sort, as bucket of element determined

by bits of a hash function

• Some meta-data to store “super-aggregate” functions,

e.g. COUNT vs. SUM

COMBINING THE TWO…

22

Both sort-based and hash-based aggregations use

partition as a subroutine:

• Partition based on keys of groups

• Partition based on hash value

• Process of building up a hash table also partitions input

by hash value!

PARTITIONING: one run per partition produced

HASHING: every full hash table split into one run per

partition

• Hash values are partition criterion

• Hashing enables early aggregation (helps in case of

locality of groups)

• In absence of locality, use general partitioning

• Similar to a radix sort, as bucket of element determined

by bits of a hash function

• Some meta-data to store “super-aggregate” functions,

e.g. COUNT vs. SUM
Is aggregation just integer sorting? Connection to

semisort paper in terms of how we view

aggregation as a procedure.

AGENDA

• Motivation

• Duality of hashing and sorting

• Efficient hashing and sorting primitives

• Design and analysis of aggregation algorithm

• Implementation and optimization of algorithm

• Evaluation and benchmarking

• Discussion

23

PARALLELIZATION

24

no I/O shared, so fully parallelizable

negligible synchronization with unions

• Always create parallel tasks for recursive calls

• Work-stealing to parallelize loop over input (robust against heavy skew)

• Some additional work (not discussed in this presentation) to adapt model for two

types of storage schemes: column-wise processing vs JiT compilation

CPU COSTS OF HASHING

• Single-level hash table with linear probing

• Hash table set to size of L3 cache and

considered full at 25% fill rate

• Collisions are rare if number of groups

much smaller than cache, so no CPU

cycles to collision-resolve

25

MINIMIZING PRIMITIVE COMPUTATIONS

CPU COSTS OF HASHING

• Single-level hash table with linear probing

• Hash table set to size of L3 cache and

considered full at 25% fill rate

• Collisions are rare if number of groups

much smaller than cache, so no CPU

cycles to collision-resolve

• Software-write combining: avoid read-

before-write overhead and reduce TLB

misses

• Use list of arrays to eliminate counting

pass determining output partitions

CPU COSTS OF PARTITIONING

26

MINIMIZING PRIMITIVE COMPUTATIONS

MINIMIZING PRIMITIVE
COMPUTATION

27

HASHING IS SORTING…

BUT WHEN TO PICK BETWEEN THEM?

28

29

If the number of groups is smaller than

the cache, HASHINGONLY computes the

entire result in cache. Otherwise, it

recurses until it can. PARTITIONALWAYS

does not– doesn’t know the right depth

to recurse to before hashing pass.

1

30

If the number of groups is smaller than

the cache, HASHINGONLY computes the

entire result in cache. Otherwise, it

recurses until it can. PARTITIONALWAYS

does not– doesn’t know the right depth

to recurse to before hashing pass.

1

If K is much bigger than cache,

partitioning is much faster. Hashing

suffers from non-sequential memory

accesses and wasted space. Tuning from

before helps partition achieve high

throughput.

2

31

If the number of groups is smaller than

the cache, HASHINGONLY computes the

entire result in cache. Otherwise, it

recurses until it can. PARTITIONALWAYS

does not– doesn’t know the right depth

to recurse to before hashing pass.

1

If K is much bigger than cache,

partitioning is much faster. Hashing

suffers from non-sequential memory

accesses and wasted space. Tuning from

before helps partition achieve high

throughput.

2

If data uniform, use partition until

number of groups per partition is small,

and then hash. If data clustered, hashing

can reduce size significantly (even though

more groups that fit in cache)–

what to do?

3

HASHING I S SORTING…

BUT WHEN TO PICK BETWEEN THEM?

32

Adaptive Method

1. Start with hashing

2. When hash table gets full, determine factor by

which input has been reduced (number of

input rows vs. size of hash table)

𝛼 ≔
𝑛𝑖𝑛
𝑛𝑜𝑢𝑡

3. If 𝛼 > 𝛼0for some threshold, switching to

partitioning

4. When 𝑛𝑖𝑛 = 𝑐 ∙ cache for some constant,

algorithm switches back to hashing

AGENDA

• Motivation

• Duality of hashing and sorting

• Efficient hashing and sorting primitives

• Design and analysis of aggregation algorithm

• Implementation and optimization of algorithm

• Evaluation and benchmarking

• Discussion

33

SCALABILITY
ON 2 31 ROWS WITH 64-BIT INT COLUMNS

34

35

Hybrid: thread aggregates its partition into

private hash fixed to its part of shared L3 cache;

LRU strategy for evictions.

Atomic: all threads on single, shared hash table.

Independent: first pass for threads to produce

hash table of its part of the input, which are then

split and merged in parallel.

Partition-And-Aggregate: Partition entire

input by hash value and then merge each partition

into its part of a hash table.

PLAT: Each thread aggregates into a private

fixed-size hash, and when full, entries overflown

into hash partitions which are merged later.

Adaptive: this paper.

COMPARISON TO STATE-OF-THE-ART
TUNED TO L3 -CACHE S IZE FOR 1 -COL DB

COMPARISON TO STATE-OF-THE-ART
TUNED TO L3 -CACHE S IZE FOR 1 -COL DB

36

Hybrid: thread aggregates its partition into

private hash fixed to its part of shared L3 cache;

LRU strategy for evictions.

Atomic: all threads on single, shared hash table.

Independent: first pass for threads to produce

hash table of its part of the input, which are then

split and merged in parallel.

Partition-And-Aggregate: Partition entire

input by hash value and then merge each partition

into its part of a hash table.

PLAT: Each thread aggregates into a private

fixed-size hash, and when full, entries overflown

into hash partitions which are merged later.

Adaptive: this paper.

SKEW RESISTANCE
PERFORMANCE BY DISTRIBUTION TYPE

37

Heavy-hitter: 50% of records have the key 1, and

the rest are uniformly distributed between 2 and

K.

Moving cluster: keys chosen uniformly from

sliding window of size 1024.

Self-similar: Pareto distribution with 80-20

proportion.

Zipfian: type of power-law distribution

SKEW RESISTANCE
PERFORMANCE BY DISTRIBUTION TYPE

38

Heavy-hitter: 50% of records have the key 1, and

the rest are uniformly distributed between 2 and

K.

Moving cluster: keys chosen uniformly from

sliding window of size 1024.

Self-similar: Pareto distribution with 80-20

proportion.

Zipfian: type of power-law distribution

Why does Adaptive perform

better on skewed distributions?

AGENDA

• Motivation

• Duality of hashing and sorting

• Efficient hashing and sorting primitives

• Design and analysis of aggregation algorithm

• Implementation and optimization of algorithm

• Evaluation and benchmarking

• Discussion

39

CONCLUSION

• Movement of data is fundamentally the limiting factor

• In external memory model, (optimized) sorting and (optimized) hashing are

equivalent in terms of cache-line transfers

• Development of algorithmic framework that leverages both

• Tune routines to modern hardware

• Outperforms all competitors

40

DISCUSSION

• Bound on cache-line transfers we established: is this a bound on cache-line

transfers for an aggregation query?

• Contradicts other work done on efficient JOINS where denser storage

preferred: consensus on what works best?

• Thoughts on how to engineer other aggregation algorithms (e.g. Atomic) to be

transparent to output size K?

• Where does this hashing/sorting tradeoff occur in other domains?

• Writing style: sequential and logically laid out, but self-aggrandizing; use of

phrases like “time gracefully decays”

41

