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MOTIVATION

• Processing power of multi-core CPUs increasing at a faster rate than memory 

bandwidth → I/O complexity is key 

• Relational database operators are expensive, and aggregation in particular

• Limiting factor is movement of data

• Originally designed to reduce number of disk accesses, main memory accesses 

considered free

• Now, move one level up hierarchy to the cache

SELECT column_name(s)
FROM table_name
WHERE condition
GROUP BY column_name(s)
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HASHAGGREGATION

• Insert input rows into hash table with 

grouping attributes as keys

• Aggregate remaining attributes in-place

Use when number of groups is small 

because output will fit in the cache, 

and provides early aggregation.
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HASHING / SORTING: UNOPTIMIZED

col1 col2

1 3

2 4

1 2

2 5

group_key = h(col1) sum(col2)

h(1) 3+2

h(2) 4+5



• Sorts the rows by grouping attributes 

• Aggregates consecutive rows of each 

group 

Use when number of groups is large 

as hashing isn’t as efficient then, but 

aggregation at later stage. 

SORTAGGREGATION
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HASHING / SORTING: UNOPTIMIZED

col1 col2

1 3

2 4

1 2

2 5

sort(col1) col2

1 3

1 2

2 4

2 5



CLAIM: HASHING IS SORTING

Can we optimize hashing/sorting such that cache line transfers are 

comparable between the two?
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Observation 1 :  hashing is equivalent to sorting by hash value 

Intermediate results from hashing can be processed by sorting routine

Hashing makes key domain more dense– an easier sorting problem!
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Observation 1 :  hashing is equivalent to sorting by hash value 

Intermediate results from hashing can be processed by sorting routine

Hashing makes key domain more dense– an easier sorting problem!

Observation 2 :  hashing allows us to perform early aggregation

Many repeated keys in distribution? Hash.

Few repeated keys? Sort.
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CLAIM: HASHING IS SORTING
IN TERMS OF CACHE COMPLEXITY

External memory model:

• N = number of input rows

• K = number of groups in the input

• M = number of rows fitting into cache

• B = number of rows per single cache line
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SORT-BASED AGGREGATION

Use bucket sorting to recursively 

partition and sort input.
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We sort each cache line for free before writing, so 

number of leaves: 

𝑙 =
𝑁

𝐵
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In cases where 𝐾 < 𝑁, keys form a multiset and 

recursion stops early, cost slightly lower:

2
𝑁

𝐵
log𝑀/𝐵min

𝑁

𝐵
, 𝐾 +

𝑁

𝐵
+

𝐾

𝐵

This is a lowerbound for multiset sorting. 



Our current cost: 

2
𝑁

𝐵
log𝑀/𝐵min

𝑁

𝐵
, 𝐾 +

𝑁

𝐵
+

𝐾

𝐵

Lastly, merge last bucket sort pass with final 

aggregation pass…

• Eliminates one pass over entire data

• Hold 𝑀 partitions instead of 𝑀/𝐵
• Only 𝐾/𝐵 leaves in the call tree 

• Intermediate results must be O(1), which is true 

for SUM, COUNT, MIN, MAX, AVG

Total cost:

2
𝑁

𝐵
log𝑀/𝐵

𝐾

𝐵
− 1 +

𝑁

𝐵
+

𝐾

𝐵

If 𝐾 < 𝑀, algorithm reads data once and calculates 

result in cache. 

SORT-BASED AGGREGATION

Use bucket sorting to recursively 

partition and sort input.

15



HASH-BASED 
AGGREGATION

Hash rows based on attribute we 

are trying to group by. 
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We need to write 𝐾/𝐵 cache lines for result, and read 

𝑁/𝐵 to read input, so long as 𝐾 < 𝑀. Cost: 
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We need to write 𝐾/𝐵 cache lines for result, and read 

𝑁/𝐵 to read input, so long as 𝐾 < 𝑀. Cost: 

𝑁

𝐵
+

𝐾

𝐵
, 𝐾 < 𝑀

2 1 −
𝑀

𝐾
𝑁, 𝑜. 𝑤.

Problem: when cache is full, there’s a cache miss for 

almost every input row! 

Optimization: partition input and recursively call 

procedure (each partition reduces 𝐾). Now, same 

number of cache-line transfers as sorting: 
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COMBINING THE TWO…
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Both sort-based and hash-based aggregations use 

partition as a subroutine: 

• Partition based on keys of groups

• Partition based on hash value

• Process of building up a hash table also partitions input 

by hash value!
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Both sort-based and hash-based aggregations use 

partition as a subroutine: 

• Partition based on keys of groups

• Partition based on hash value

• Process of building up a hash table also partitions input 

by hash value!

PARTITIONING: one run per partition produced 

HASHING: every full hash table split into one run per 

partition

• Hash values are partition criterion

• Hashing enables early aggregation (helps in case of 

locality of groups)

• In absence of locality, use general partitioning 

• Similar to a radix sort, as bucket of element determined 

by bits of a hash function 

• Some meta-data to store “super-aggregate” functions, 

e.g. COUNT vs. SUM 
Is aggregation just integer sorting? Connection to 

semisort paper in terms of how we view 

aggregation as a procedure. 
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PARALLELIZATION
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no I/O shared, so fully parallelizable

negligible synchronization with unions

• Always create parallel tasks for recursive calls 

• Work-stealing to parallelize loop over input (robust against heavy skew)

• Some additional work (not discussed in this presentation) to adapt model for two 

types of storage schemes: column-wise processing vs JiT compilation  



CPU COSTS OF HASHING

• Single-level hash table with linear probing

• Hash table set to size of L3 cache and 

considered full at 25% fill rate

• Collisions are rare if number of groups 

much smaller than cache, so no CPU 

cycles to collision-resolve 

25

MINIMIZING PRIMITIVE COMPUTATIONS



CPU COSTS OF HASHING

• Single-level hash table with linear probing

• Hash table set to size of L3 cache and 

considered full at 25% fill rate

• Collisions are rare if number of groups 

much smaller than cache, so no CPU 

cycles to collision-resolve 

• Software-write combining: avoid read-

before-write overhead and reduce TLB 

misses 

• Use list of arrays to eliminate counting 

pass determining output partitions 

CPU COSTS OF PARTITIONING
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MINIMIZING PRIMITIVE COMPUTATIONS



MINIMIZING PRIMITIVE 
COMPUTATION  
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HASHING IS SORTING…

BUT WHEN TO PICK BETWEEN THEM?
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If the number of groups is smaller than 

the cache, HASHINGONLY computes the 

entire result in cache. Otherwise, it 

recurses until it can. PARTITIONALWAYS

does not– doesn’t know the right depth 

to recurse to before hashing pass. 
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If K is much bigger than cache, 

partitioning is much faster. Hashing 

suffers from non-sequential memory 

accesses and wasted space. Tuning from 

before helps partition achieve high 

throughput. 
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If the number of groups is smaller than 

the cache, HASHINGONLY computes the 

entire result in cache. Otherwise, it 

recurses until it can. PARTITIONALWAYS

does not– doesn’t know the right depth 

to recurse to before hashing pass. 

1

If K is much bigger than cache, 

partitioning is much faster. Hashing 

suffers from non-sequential memory 

accesses and wasted space. Tuning from 

before helps partition achieve high 

throughput. 

2

If data uniform, use partition until 

number of groups per partition is small, 

and then hash. If data clustered, hashing 

can reduce size significantly (even though 

more groups that fit in cache)–

what to do? 
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HASHING I S  SORTING…

BUT WHEN TO PICK BETWEEN THEM?
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Adaptive Method

1. Start with hashing

2. When hash table gets full, determine factor by 

which input has been reduced (number of 

input rows vs. size of hash table) 

𝛼 ≔
𝑛𝑖𝑛
𝑛𝑜𝑢𝑡

3. If 𝛼 > 𝛼0for some threshold, switching to 

partitioning

4. When 𝑛𝑖𝑛 = 𝑐 ∙ cache for some constant, 

algorithm switches back to hashing
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SCALABILITY
ON 2 31 ROWS WITH 64-BIT INT COLUMNS
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Hybrid: thread aggregates its partition into 

private hash fixed to its part of shared L3 cache; 

LRU strategy for evictions.

Atomic: all threads on single, shared hash table. 

Independent: first pass for threads to produce 

hash table of its part of the input, which are then 

split and merged in parallel. 

Partition-And-Aggregate: Partition entire 

input by hash value and then merge each partition 

into its part of a hash table. 

PLAT: Each thread aggregates into a private 

fixed-size hash, and when full, entries overflown 

into hash partitions which are merged later. 

Adaptive: this paper. 

COMPARISON TO STATE-OF-THE-ART
TUNED TO L3 -CACHE S IZE FOR 1 -COL DB
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SKEW RESISTANCE
PERFORMANCE BY DISTRIBUTION TYPE
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Heavy-hitter: 50% of records have the key 1, and 

the rest are uniformly distributed between 2 and 

K. 

Moving cluster: keys chosen uniformly from 

sliding window of size 1024.

Self-similar: Pareto distribution with 80-20 

proportion. 

Zipfian: type of power-law distribution 



SKEW RESISTANCE
PERFORMANCE BY DISTRIBUTION TYPE

38

Heavy-hitter: 50% of records have the key 1, and 

the rest are uniformly distributed between 2 and 

K. 

Moving cluster: keys chosen uniformly from 

sliding window of size 1024.

Self-similar: Pareto distribution with 80-20 

proportion. 

Zipfian: type of power-law distribution 

Why does Adaptive perform 

better on skewed distributions? 
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CONCLUSION

• Movement of data is fundamentally the limiting factor 

• In external memory model, (optimized) sorting and (optimized) hashing are 

equivalent in terms of cache-line transfers

• Development of algorithmic framework that leverages both 

• Tune routines to modern hardware 

• Outperforms all competitors

40



DISCUSSION

• Bound on cache-line transfers we established: is this a bound on cache-line 

transfers for an aggregation query?

• Contradicts other work done on efficient JOINS where denser storage 

preferred: consensus on what works best?

• Thoughts on how to engineer other aggregation algorithms (e.g. Atomic) to be 

transparent to output size K?

• Where does this hashing/sorting tradeoff occur in other domains?

• Writing style: sequential and logically laid out, but self-aggrandizing; use of 

phrases like “time gracefully decays” 
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