Pregel: A System for
Large-Scale Graph Processing

Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, llan Horn,
Naty Leiser, and Grzegorz Czajkowski

Presented by: Ramya Nagarajan
Spring 2019

Agenda

Motivation

Related Work

Model of Computation
Execution Architecture
Experiments

Final Remarks

Motivation

e Graphalgorithms don’t lend themselves to scalability and efficiency
o Poor locality of memory access
o Changing degree of parallelism over course of execution

e Noscalable system for arbitrary graph algorithms
e Need for scalable general-purpose system for executing graph algorithms in large-scale distributed
environment

Related/Prior Work

e Existing distributed systems:
o ie:MapReduce
o Sub-optimal performance and usability
e Single-computer graph algorithm libraries
o BGL, LEDA, NetworkX, JDSL, GraphBase, FGL
o Notscalable
e Existing parallel graph systems
o Parallel BGL, CGMgraph
o Nofaulttolerance
e Valiant’s Bulk Synchronous Parallel Model

Model of Computation

e Input:
o Directed graph, each vertex labeled with a string identifier

Model of Computation

e Input:
o Directed graph, each vertex labeled with a string identifier
e Series of supersteps

Model of Computation

e Input:

o Directed graph, each vertex labeled with a string identifier
e Series of supersteps

o Superstep O: all vertices active

Model of Computation

e Input:
o Directed graph, each vertex labeled with a string identifier
e Series of supersteps
o Superstep O: all vertices active
o Supersteps1-n:
m Vertex computations
[Message passing between vertices
m Topology mutations

Model of Computation

e Input:
o Directed graph, each vertex labeled with a string identifier
e Series of supersteps
o Superstep O: all vertices active
o Supersteps1-n:
m Vertex computations
m Message passing between vertices
m Topology Mutations
o Vertex halting
m Noassociated computations or messages

Model of Computation

e Input:
o Directed graph, each vertex labeled with a string identifier
e Series of supersteps
o Superstep O: all vertices active
o Supersteps1-n:
m Vertex computations
m Message passing between vertices
m Topology mutations
o Vertex halting
m Noassociated computations or messages
e Termination Condition
o Allvertices have halted

Model of Computation

e Input:
o Directed graph, each vertex labeled with a string identifier
e Series of supersteps
o Superstep O: all vertices active
o Supersteps1-n:
m Vertex computations
m Message passing between vertices
m Topology Mutations
o Vertex halting
m Noassociated computations or messages
e Termination Condition
o Allvertices have halted
e Output:
o Set of vertex output values

Message Passing

® Vertices can send any number of messages to any other number of vertices in the graph

o Send message at superstep S
o Messagesreceived at superstep S+1

Message Passing

® Vertices can send any number of messages to any other number of vertices in the graph
o Send message at superstep S
o Messagesreceived at superstep S+1

e User-defined handlers:
o Specify behavior if message receiver does not exist in graph

Message Passing

e Combiners

o Function to combine result of all messages sent to a certain vertex
o Use by subclassing pre-defined Combiner class

Message Passing

e Combiners
o Function to combine result of all messages sent to a certain vertex
o Use by subclassing pre-defined Combiner class
e Aggregators
o Result made available to all vertices
o Use by subclassing of pre-defined Aggregator class

Topology Mutations

e Removals and additions

o Add/remove edges
o Add nodes
o Remove nodes and outgoing edges

Topology Mutations

e Removals and additions

o Add/remove edges

o Add nodes

o Remove nodes and outgoing edges
e Partial ordering

o Removals before additions

o Edge removals, vertex removals, vertex additions, edge additions
e Handlers

Maximum Value Calculation using Pregel

Maximum Value Calculation using Pregel

Maximum Value Calculation using Pregel

o

Maximum Value Calculation using Pregel

o

Applications

PageRank
Shortest Paths
Bipartite Matching
Semi-clustering

Example: Shortest Paths

e Implemented for single-source shortest path
e Allverticesinitialized to INF
e SuperstepO:
o Source vertex updates value to O, broadcasts to neighbors
e Subsequent supersteps:
o Broadcast new minimum values
e Terminates when no remaining updates

Basic Architecture

e Graph partitioned into sets:
o Each set contains a group of vertices + outgoing edges from vertices
e Worker and master machine separation

Basic Architecture

e Graph partitioned into sets:

O

Each set contains a group of vertices + outgoing edges from vertices

e Worker and master machine separation
e Execution Steps:

O

(@]
o
(@]

Many copies of the input graph run
Master determines number of partitions
Master assigns partitions to workers
Master orchestrates superstep start

Worker and Master Implementations

e Worker:
o Loops through all vertices, performs Compute() step
o Runstwo threads:
m Thread to process vertices
m Threadtoreceive messages
e Master:
o Coordinating worker activities
o Barrier Synchronization

Fault Tolerance

e Checkpointing
o Worker state saved
o Frequency selected based on mean time to failure model

e “Ping” messages for failure detection
e Confined recovery

Experiments

180
160
140
120
100
80
60
40
20

Runtime (seconds)

100 200 300 400 500 600 700 800

Number of worker tasks

Figure 7: SSSP—1 billion vertex binary tree: vary-
ing number of worker tasks scheduled on 300 multi-
core machines

800
700+
600 1
500
400+
3001
200
100

Runtime (seconds)

" 5G 10G 153G 20G 25G 30G 35G 40G 435G 50G

Number of vertices

Figure 8: SSSP—binary trees: varying graph sizes
on 800 worker tasks scheduled on 300 multicore ma-
chines

Experiments

800
700
600
500
400-
300
200
100

Runtime (seconds)

100M 200M 300M 400M 500M 600M 700M 800M 900M 1G

Number of vertices

Figure 9: SSSP—Ilog-normal random graphs, mean
out-degree 127.1 (thus over 127 billion edges in the
largest case): varying graph sizes on 800 worker
tasks scheduled on 300 multicore machines

Final Remarks

e Fault tolerant, scalable implementation of model
e “Thinklike a vertex” vs “Think like a graph”

o Improved locality
o Improved linear scalability
e Model for many other graph processing algorithms (ie Apache Giraph)

