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Motivation

e Graphalgorithms don’t lend themselves to scalability and efficiency
o  Poor locality of memory access
o  Changing degree of parallelism over course of execution

e Noscalable system for arbitrary graph algorithms
e Need for scalable general-purpose system for executing graph algorithms in large-scale distributed
environment



Related/Prior Work

e Existing distributed systems:
o ie:MapReduce
o  Sub-optimal performance and usability
e Single-computer graph algorithm libraries
o BGL, LEDA, NetworkX, JDSL, GraphBase, FGL
o  Notscalable
e Existing parallel graph systems
o  Parallel BGL, CGMgraph
o  Nofaulttolerance
e Valiant’s Bulk Synchronous Parallel Model
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e Input:
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Model of Computation

e Input:
o  Directed graph, each vertex labeled with a string identifier
e Series of supersteps



Model of Computation

e Input:

o  Directed graph, each vertex labeled with a string identifier
e Series of supersteps

o  Superstep O: all vertices active



Model of Computation

e Input:
o  Directed graph, each vertex labeled with a string identifier
e Series of supersteps
o  Superstep O: all vertices active
o  Supersteps1-n:
m Vertex computations
[ Message passing between vertices
m  Topology mutations



Model of Computation

e Input:
o  Directed graph, each vertex labeled with a string identifier
e Series of supersteps
o  Superstep O: all vertices active
o  Supersteps1-n:
m Vertex computations
m  Message passing between vertices
m  Topology Mutations
o  Vertex halting
m  Noassociated computations or messages



Model of Computation

e Input:
o  Directed graph, each vertex labeled with a string identifier
e Series of supersteps
o  Superstep O: all vertices active
o  Supersteps1-n:
m Vertex computations
m  Message passing between vertices
m  Topology mutations
o  Vertex halting
m  Noassociated computations or messages
e Termination Condition
o  Allvertices have halted



Model of Computation

e Input:
o  Directed graph, each vertex labeled with a string identifier
e Series of supersteps
o  Superstep O: all vertices active
o  Supersteps1-n:
m Vertex computations
m  Message passing between vertices
m  Topology Mutations
o  Vertex halting
m  Noassociated computations or messages
e Termination Condition
o  Allvertices have halted
e Output:
o  Set of vertex output values
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Message Passing

® Vertices can send any number of messages to any other number of vertices in the graph
o  Send message at superstep S
o  Messagesreceived at superstep S+1

e User-defined handlers:
o  Specify behavior if message receiver does not exist in graph
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Message Passing

e Combiners
o  Function to combine result of all messages sent to a certain vertex
o Use by subclassing pre-defined Combiner class
e Aggregators
o  Result made available to all vertices
o  Use by subclassing of pre-defined Aggregator class
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o  Remove nodes and outgoing edges



Topology Mutations

e Removals and additions

o  Add/remove edges

o  Add nodes

o  Remove nodes and outgoing edges
e Partial ordering

o  Removals before additions

o Edge removals, vertex removals, vertex additions, edge additions
e Handlers
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Applications

PageRank
Shortest Paths
Bipartite Matching
Semi-clustering



Example: Shortest Paths

e Implemented for single-source shortest path
e Allverticesinitialized to INF
e SuperstepO:
o  Source vertex updates value to O, broadcasts to neighbors
e Subsequent supersteps:
o  Broadcast new minimum values
e Terminates when no remaining updates



Basic Architecture

e Graph partitioned into sets:
o Each set contains a group of vertices + outgoing edges from vertices
e Worker and master machine separation



Basic Architecture

e Graph partitioned into sets:

O

Each set contains a group of vertices + outgoing edges from vertices

e Worker and master machine separation
e Execution Steps:

O

(@]
o
(@]

Many copies of the input graph run
Master determines number of partitions
Master assigns partitions to workers
Master orchestrates superstep start



Worker and Master Implementations

e Worker:
o  Loops through all vertices, performs Compute() step
o  Runstwo threads:
m Thread to process vertices
m Threadtoreceive messages
e Master:
o  Coordinating worker activities
o Barrier Synchronization



Fault Tolerance

e Checkpointing
o  Worker state saved
o Frequency selected based on mean time to failure model

e “Ping” messages for failure detection
e Confined recovery



Experiments
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Figure 7: SSSP—1 billion vertex binary tree: vary-
ing number of worker tasks scheduled on 300 multi-
core machines
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Figure 8: SSSP—binary trees: varying graph sizes
on 800 worker tasks scheduled on 300 multicore ma-
chines



Experiments
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Figure 9: SSSP—Ilog-normal random graphs, mean
out-degree 127.1 (thus over 127 billion edges in the
largest case): varying graph sizes on 800 worker
tasks scheduled on 300 multicore machines



Final Remarks

e Fault tolerant, scalable implementation of model
e “Thinklike a vertex” vs “Think like a graph”

o  Improved locality
o Improved linear scalability
e Model for many other graph processing algorithms (ie Apache Giraph)



