
Pregel: A System for
Large-Scale Graph Processing

Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski

Presented by: Ramya Nagarajan
Spring 2019

Agenda

● Motivation

● Related Work

● Model of Computation

● Execution Architecture

● Experiments

● Final Remarks

Motivation

● Graph algorithms don’t lend themselves to scalability and efficiency
○ Poor locality of memory access
○ Changing degree of parallelism over course of execution

● No scalable system for arbitrary graph algorithms

● Need for scalable general-purpose system for executing graph algorithms in large-scale distributed

environment

Related/Prior Work

● Existing distributed systems:
○ ie: MapReduce
○ Sub-optimal performance and usability

● Single-computer graph algorithm libraries
○ BGL, LEDA, NetworkX, JDSL, GraphBase, FGL
○ Not scalable

● Existing parallel graph systems
○ Parallel BGL, CGMgraph
○ No fault tolerance

● Valiant’s Bulk Synchronous Parallel Model

Model of Computation

● Input:
○ Directed graph, each vertex labeled with a string identifier

Model of Computation

● Input:
○ Directed graph, each vertex labeled with a string identifier

● Series of supersteps

Model of Computation

● Input:
○ Directed graph, each vertex labeled with a string identifier

● Series of supersteps
○ Superstep 0: all vertices active

Model of Computation

● Input:
○ Directed graph, each vertex labeled with a string identifier

● Series of supersteps
○ Superstep 0: all vertices active
○ Supersteps 1 - n:

■ Vertex computations
■ Message passing between vertices
■ Topology mutations

Model of Computation

● Input:
○ Directed graph, each vertex labeled with a string identifier

● Series of supersteps
○ Superstep 0: all vertices active
○ Supersteps 1 - n:

■ Vertex computations
■ Message passing between vertices
■ Topology Mutations

○ Vertex halting
■ No associated computations or messages

Model of Computation

● Input:
○ Directed graph, each vertex labeled with a string identifier

● Series of supersteps
○ Superstep 0: all vertices active
○ Supersteps 1 - n:

■ Vertex computations
■ Message passing between vertices
■ Topology mutations

○ Vertex halting
■ No associated computations or messages

● Termination Condition
○ All vertices have halted

Model of Computation

● Input:
○ Directed graph, each vertex labeled with a string identifier

● Series of supersteps
○ Superstep 0: all vertices active
○ Supersteps 1 - n:

■ Vertex computations
■ Message passing between vertices
■ Topology Mutations

○ Vertex halting
■ No associated computations or messages

● Termination Condition
○ All vertices have halted

● Output:
○ Set of vertex output values

Message Passing

● Vertices can send any number of messages to any other number of vertices in the graph

○ Send message at superstep S
○ Messages received at superstep S+1

Message Passing

● Vertices can send any number of messages to any other number of vertices in the graph

○ Send message at superstep S
○ Messages received at superstep S+1

● User-defined handlers:
○ Specify behavior if message receiver does not exist in graph

Message Passing

● Combiners
○ Function to combine result of all messages sent to a certain vertex
○ Use by subclassing pre-defined Combiner class

Message Passing

● Combiners
○ Function to combine result of all messages sent to a certain vertex
○ Use by subclassing pre-defined Combiner class

● Aggregators
○ Result made available to all vertices
○ Use by subclassing of pre-defined Aggregator class

Topology Mutations

● Removals and additions
○ Add/remove edges
○ Add nodes
○ Remove nodes and outgoing edges

Topology Mutations

● Removals and additions
○ Add/remove edges
○ Add nodes
○ Remove nodes and outgoing edges

● Partial ordering
○ Removals before additions
○ Edge removals, vertex removals, vertex additions, edge additions

● Handlers

Maximum Value Calculation using Pregel

3 5

8 1

Maximum Value Calculation using Pregel

 3 5

8 1

3

5

51

1

8

5` 5

8 8

Maximum Value Calculation using Pregel

5 5

8 8

5

5

58

8

8

5` 8

8 8

Maximum Value Calculation using Pregel

5 8

8 8

5

8

88

8

8

8` 8

8 8

Applications

● PageRank

● Shortest Paths

● Bipartite Matching

● Semi-clustering

Example: Shortest Paths

● Implemented for single-source shortest path

● All vertices initialized to INF

● Superstep 0:
○ Source vertex updates value to 0, broadcasts to neighbors

● Subsequent supersteps:
○ Broadcast new minimum values

● Terminates when no remaining updates

Basic Architecture

● Graph partitioned into sets:
○ Each set contains a group of vertices + outgoing edges from vertices

● Worker and master machine separation

Basic Architecture

● Graph partitioned into sets:
○ Each set contains a group of vertices + outgoing edges from vertices

● Worker and master machine separation

● Execution Steps:
○ Many copies of the input graph run
○ Master determines number of partitions
○ Master assigns partitions to workers
○ Master orchestrates superstep start

Worker and Master Implementations

● Worker:
○ Loops through all vertices, performs Compute() step
○ Runs two threads:

■ Thread to process vertices
■ Thread to receive messages

● Master:
○ Coordinating worker activities
○ Barrier Synchronization

Fault Tolerance

● Checkpointing
○ Worker state saved
○ Frequency selected based on mean time to failure model

● “Ping” messages for failure detection

● Confined recovery

Experiments

Experiments

Final Remarks

● Fault tolerant, scalable implementation of model

● “Think like a vertex” vs “Think like a graph”
○ Improved locality
○ Improved linear scalability

● Model for many other graph processing algorithms (ie Apache Giraph)

