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Motivation

● Graph algorithms don’t lend themselves to scalability and efficiency
○ Poor locality of memory access
○ Changing degree of parallelism over course of execution

● No scalable system for arbitrary graph algorithms

● Need for scalable general-purpose system for executing graph algorithms in large-scale distributed 

environment



Related/Prior Work

● Existing distributed systems:
○ ie: MapReduce
○ Sub-optimal performance and usability

● Single-computer graph algorithm libraries
○ BGL, LEDA, NetworkX, JDSL, GraphBase, FGL
○ Not scalable

● Existing parallel graph systems
○ Parallel BGL, CGMgraph
○ No fault tolerance

● Valiant’s Bulk Synchronous Parallel Model
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Model of Computation

● Input: 
○ Directed graph, each vertex labeled with a string identifier

● Series of supersteps
○ Superstep 0: all vertices active
○ Supersteps 1 - n:

■ Vertex computations
■ Message passing between vertices
■ Topology Mutations

○ Vertex halting
■ No associated computations or messages

● Termination Condition
○ All vertices have halted

● Output:
○ Set of vertex output values
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Message Passing

● Vertices can send any number of messages to any other number of vertices in the graph

○ Send message at superstep S
○ Messages received at superstep S+1

● User-defined handlers:
○ Specify behavior if message receiver does not exist in graph
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Message Passing

● Combiners
○ Function to combine result of all messages sent to a certain vertex
○ Use by subclassing pre-defined Combiner class

● Aggregators
○ Result made available to all vertices
○ Use by subclassing of pre-defined Aggregator class
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Topology Mutations

● Removals and additions
○ Add/remove edges
○ Add nodes
○ Remove nodes and outgoing edges

● Partial ordering
○ Removals before additions
○ Edge removals, vertex removals, vertex additions, edge additions

● Handlers
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Applications

● PageRank

● Shortest Paths

● Bipartite Matching

● Semi-clustering



Example: Shortest Paths

● Implemented for single-source shortest path

● All vertices initialized to INF

● Superstep 0:
○ Source vertex updates value to 0, broadcasts to neighbors

● Subsequent supersteps:
○ Broadcast new minimum values

● Terminates when no remaining updates
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Basic Architecture

● Graph partitioned into sets:
○ Each set contains a group of vertices + outgoing edges from vertices

● Worker and master machine separation

● Execution Steps:
○ Many copies of the input graph run 
○ Master determines number of partitions
○ Master assigns partitions to workers
○ Master orchestrates superstep start



Worker and Master Implementations

● Worker:
○ Loops through all vertices, performs Compute() step
○ Runs two threads:

■ Thread to process vertices
■ Thread to receive messages

● Master:
○ Coordinating worker activities
○ Barrier Synchronization



Fault Tolerance

● Checkpointing
○ Worker state saved
○ Frequency selected based on mean time to failure model

● “Ping” messages for failure detection

● Confined recovery
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Final Remarks

● Fault tolerant, scalable implementation of model

● “Think like a vertex” vs “Think like a graph”
○ Improved locality
○ Improved linear scalability

● Model for many other graph processing algorithms (ie Apache Giraph)


