PowerGraph

Presented by: Omar Obeya

New Problem

Previous frameworks are inefficient for power law

graphs

Challenges

1 - Work Balance

2 - Communication
3 - Storage

4 - Partitioning

5 - Computation

GAS system

interface GASVertexProgram(u) ({
// Run on gather_nbrs (u)
gather (D, D(u’v), D,) — Accum
sum (Accum left, Accum right) — Accum
apply (D,, Accum) — D;="
// Run on scatter_nbrs (u)

scatter (D,®%, Dy, Dv) — (Dpr", Accum)

()’

Delta Caching

// gather_nbrs: IN_NBRS
gather (D,, D(u,v), .)5e
return D,.rank / #outNbrs(v)
sum(a, b): return a + b
apply (Dy, acc):
rnew = 0.15 + 0.85 * acc
D,.delta = (rnew - D,.rank)/
$outNbrs (u)
D,.rank = rnew
// scatter_nbrs: OUT_NBRS
scatter (D,, D(,,,,.) o)
if(|Dy.delta|>€) Activate (v)
return delta

- Avoids re-gather-ing of data
of unchanged neighbors.

- Optional
- Not always possible

- Useful for power law graphs.

Interface Comparison

// gather_nbrs: IN_NBRS Message combiner (Message ml, Message m2)
gather(D,,, D(u v)' Dv): r_eturn Message (ml.value() + m2.value());
’ void PregelPageRank (Message msqg)
return D,.rank / #outNbrs(v) float total = msg waluel):
sum(a, b): return a + b vertex.val = 0.15 + 0.85«total;
foreach(nbr in out_neighbors)

apply (Dy, acc): SendMsg (nbr, vertex.val/num_out_nbrs);
rnew = 0.15 + 0.85 * acc
D,.delta = (rnew - D,.rank)/
$outNbrs (u)
D,.rank = rnew

// scatter_nbrs: OUT_NBRS i GraphniipaqeRanl: (s)
voi raphLabPageRan cope scope
scatter (Du,D(u,v),Dv) . float accum = 0;
if (|Du- delta | >€) Activate (V) foreach (nbr in scope.in_nbrs)
accum += nbr.val / nbr.nout_nbrs();

return delta vertex.val = 0.15 + 0.85 * accum;

New Problem

Challenges

1 - Work Balance

2 - Communication
3 - Storage

4 - Partitioning

5 - Computation

Vertex Cut vs. Edge Cut

- @é o) 50 =0

(a) Edge-Cut (b) Vertex-Cut

Figure 4: (a) An edge-cut and (b) vertex-cut of a graph into
three parts. Shaded vertices are ghosts and mirrors respectively.

Partition Design Decisions

1 - Put each edge on one machine.
2 - Put replicas of vertices on different machines.

3 - Elect one replica as master and others as mirrors, maintain
consistency in a centralized fashion.

4 — Minimize replicas to minimize communication and duplication of
data.

Communication

(1) Gather

Accumulator
(Partial Sum)

Updated
Vertex Data

(S) Scatter

Gather

Scatter,

Machine 2

Machine 1

Figure 5: The communication pattem of the PowerGraph ab-
straction when using a vertex-cut. Gather function runs locally
on each machine and then one accumulators is sent from each
mirror to the master. The master runs the apply function and
then sends the updated vertex data to all mirrors. Finally the
scatter phase is run in parallel on mirrors.

New Problem

Challenges

1 - Work Balance

2 - Communication
3 - Storage

4 - Partitioning

5 - Computation

Vertex Cut vs. Edge Cut

Vertex Cut

1 - Minimizes vertex cuts -
replicas in powerGraph

2 - Efficient to compute

Edge Cut

1 - Hard to compute with
power law graphs.

2 - Even if computed, not
suitable for PowerGraph.

3 - When random, most edges
will be cut.

New Problem

Challenges

1 - Work Balance

2 - Communication
3 - Storage

4 - Partitioning

5 - Computation

Vertex Cut Computation

Random Greedy

Case 1: If A(u) and A(v) intersect, then the edge should be
assigned to a machine in the intersection.

ASSign eaCh ed ge to a d iffe rent Case 2: If A(u) and A(v) are not empty and do not intersect,
. . then the edge should be assigned to one of the machines
maCh inein pa ra IIEI. from the vertex with the most unassigned edges.

Case 3: If only one of the two vertices has been assigned, then
choose a machine from the assigned vertex.

Case 4: If neither vertex has been assigned, then assign the
edge to the least loaded machine.

Implementations

1- Coordinated .. et

3 s g

g 10 ‘,-' ' \oumous ‘2

5 e E

.. Fed " :
2 - Oblivious 8 e
?8 16 ﬁmm 48 54

(a) Replication Factor (Twitter) (b) Ingress tme (Twitter)
3 - Random Figure 8: (a,b) Replication factor and runtime of graph ingress

for the Twitter follower network as a function of the number of
machines for random, oblivious, and coordinated vertex-cuts.

Implementations

1 - Coordinated

»g \.\/Sygd\rmouﬂ Zandom)) %
g2l R
2 - Oblivious b .8 |
: 5
5 5
16 32 a8 B4 a2 38
Number of Machines Number of Machines

3 -Ran d om (a) Twitter PageRank Runtime (b) Twitter PageRank Comms

New Problem

Challenges

1 - Work Balance

2 - Communication
3 - Storage

4 - Partitioning

5 - Computation

Implementations

1 - Synchronized

2 - Asynchronized

Milion User Ops Per Second
2 2 2 8 B

150 b |
No Caching
» 8 E | AsyncsS
8’ 10 Deita Caching 5 K >-_1_,/
5 A4 =
3 g
£ 3l < ’ i
= = |
Opsmal
20 a0 &0) 1000 1500 16 2 48
Number of Machines Time {s) Number of Machines

(a) Twitter PageRank Throughput (b) Twitter PageRank Delta Cache

3 - Asynchronized and
Serializable

A

(¢) Coloring Weak Scaling

Parallel Locking

Async Serializable
PowerGraph

1 - Use Parallel Locking

2 - Extend Chandy-Misra
Solution

3 - Each mirror attempts to
acquire its own locks.

GraphLab
1 - Sequential Locking
2 - Use Dijkstra

3 - Suitable only when nodes
degrees are small.

Comparison with Pregel and GraphLab

1 1
Graphlab @ () regel (Piccolo)
g Prege! (Piccolo) g S F10 Graphiab
0 0w
PowerGraph (Random) PowerGraph (Random) E Pregel (Picoolo) E
g1 PowerGraph (Coord.) E 1 PowerGraph (Coord.) . raph PowerGraph
510- iR N :‘0 N 5 5 L. 1 25— s 1
E 5 g § — & T
= —— . . > - +
8 19 2 2.1 22) 1.9 2 2.1 2.2 8 19 2 2.1 22 8 19 2 2.1 22
o o o o
(a) Power-law Fan-In Runtime (b) Power-law Fan-Out Runtime (c) Power-law Fan-In Comm. (d) Power-law Fan-Out Comm.

Summary of the solution

Essence of the solution:

1 - Decouple different types of operations (read-only, write to
adjacent nodes, changing node data) .

2 — Use smart partitioning strategies to decrease communication.
3 — Shared memory; data not need to be moved.

4 — Optimized for power law graph.

Contributions and Notes

1. An analysis of the challenges of power-law graphs
in distributed graph computation and the limitations

of existing graph parallel abstractions (Sec.2and 3).] — ACh ieved the five gOa l,S y
2. The PowerGraph abstraction (Sec. 4) which factors Wlth m | n | ma l trade_offs

individual vertex-programs.

3. Adelta caching procedure which allows computation _ 1
state to be dynamically maintained (Sec. 4.2). 2 ThO rou gh ana lySIS

4. A new fast approach to data layout for power-law 3 - The resea rCh iS built on
graphs in distributed environments (Sec. 5).

5. An theoretical characterization of network and stor- ~ d9SUIM I n g natura l gra p hS are
age (Theorem 5.2, Theorem 5.3). powe r laWS.

6. A high-performance open-source implementation of
the PowerGraph abstraction (Sec. 7).

7. A comprehensive evaluation of three implementa-
tions of PowerGraph on a large EC2 deployment
using real-world MLDM applications (Sec. 6 and 7).

References

1 — Gonzalez, Joseph E., Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. "Powergraph: distributed graph-parallel computation on
natural graphs." In OSDI, vol. 12, no. 1, p. 2. 2012.

2 — Low, Yucheng, Joseph E. Gonzalez, Aapo Kyrola, Danny Bickson,
Carlos E. Guestrin, and Joseph Hellerstein. "Graphlab: A new framework
for parallel machine learning." arXiv preprint arXiv:1408.2041 (2014).

3 — Malewicz, Grzegorz, Matthew H. Austern, Aart JC Bik, James C.
Dehnert, llan Horn, Naty Leiser, and Grzegorz Czajkowski. "Pregel: a
system for large-scale graph processing." In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data, pp.
135-146. ACM, 2010.

- The paper makes use of power law, what about other
properties in natural graphs?

- How does the nature of the algorithm impacts the
framework?

- How does PowerGraph compares with GraphLab and Pregel?

