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New Problem

Previous frameworks are inefficient for power law 
graphs



Challenges

1 – Work Balance

2 – Communication

3 – Storage

4 – Partitioning

5 – Computation



GAS system



Delta Caching

 

– Avoids re-gather-ing of data 
of unchanged neighbors.

- Optional

- Not always possible

– Useful for power law graphs.



Interface Comparison
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Vertex Cut vs. Edge Cut



Partition Design Decisions

1 – Put each edge on one machine.

2 – Put replicas of vertices on different machines.

3 – Elect one replica as master and others as mirrors, maintain 
consistency in a centralized fashion.

4 – Minimize replicas to minimize communication and duplication of 
data. 



Communication
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Vertex Cut vs. Edge Cut

Vertex Cut

 
1 – Minimizes vertex cuts - 
replicas in powerGraph

2 – Efficient to compute

Edge Cut

 
1 – Hard to compute with 
power law graphs.

2 – Even if computed, not 
suitable for PowerGraph. 

3 – When random, most edges 
will be cut.
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Vertex Cut Computation

Random

 

 

Assign each edge to a different 
machine in parallel.

 

Greedy

 



 

1 – Coordinated

 

2 – Oblivious

 

3 – Random

Implementations
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1 – Synchronized

 

2 – Asynchronized

 

3 – Asynchronized and 
Serializable

Implementations



Parallel Locking

Async Serializable 
PowerGraph

1 – Use Parallel Locking

2 – Extend Chandy-Misra 
Solution

3 – Each mirror attempts to 
acquire its own locks.

GraphLab                         

1 – Sequential Locking

2 – Use Dijkstra

3 – Suitable only when nodes 
degrees are small.



Comparison with Pregel and GraphLab



Summary of the solution

Essence of the solution:
 
1 – Decouple different types of operations (read-only, write to 

adjacent nodes, changing node data) .
 
2 – Use smart partitioning strategies to decrease communication.
 
3 – Shared memory; data not need to be moved.
 
4 – Optimized for power law graph. 



Contributions and Notes

 

1 – Achieved the five goals, 
with minimal trade-offs.

2 – Thorough analysis

3 – The research is built on 
assuming natural graphs are 
power laws.
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Questions

 

- The paper makes use of power law, what about other 
properties in natural graphs?

- How does the nature of the algorithm impacts the 
framework?

- How does PowerGraph compares with GraphLab and Pregel?
 


