
PowerGraph

Presented by: Omar Obeya

New Problem

Previous frameworks are inefficient for power law
graphs

Challenges

1 – Work Balance

2 – Communication

3 – Storage

4 – Partitioning

5 – Computation

GAS system

Delta Caching

– Avoids re-gather-ing of data
of unchanged neighbors.

- Optional

- Not always possible

– Useful for power law graphs.

Interface Comparison

New Problem

Challenges

1 – Work Balance

2 – Communication

3 – Storage

4 – Partitioning

5 – Computation

Vertex Cut vs. Edge Cut

Partition Design Decisions

1 – Put each edge on one machine.

2 – Put replicas of vertices on different machines.

3 – Elect one replica as master and others as mirrors, maintain
consistency in a centralized fashion.

4 – Minimize replicas to minimize communication and duplication of
data.

Communication

New Problem

Challenges

1 – Work Balance

2 – Communication

3 – Storage

4 – Partitioning

5 – Computation

Vertex Cut vs. Edge Cut

Vertex Cut

1 – Minimizes vertex cuts -
replicas in powerGraph

2 – Efficient to compute

Edge Cut

1 – Hard to compute with
power law graphs.

2 – Even if computed, not
suitable for PowerGraph.

3 – When random, most edges
will be cut.

New Problem

Challenges

1 – Work Balance

2 – Communication

3 – Storage

4 – Partitioning

5 – Computation

Vertex Cut Computation

Random

Assign each edge to a different
machine in parallel.

Greedy

1 – Coordinated

2 – Oblivious

3 – Random

Implementations

1 – Coordinated

2 – Oblivious

3 – Random

Implementations

New Problem

Challenges

1 – Work Balance

2 – Communication

3 – Storage

4 – Partitioning

5 – Computation

1 – Synchronized

2 – Asynchronized

3 – Asynchronized and
Serializable

Implementations

Parallel Locking

Async Serializable
PowerGraph

1 – Use Parallel Locking

2 – Extend Chandy-Misra
Solution

3 – Each mirror attempts to
acquire its own locks.

GraphLab

1 – Sequential Locking

2 – Use Dijkstra

3 – Suitable only when nodes
degrees are small.

Comparison with Pregel and GraphLab

Summary of the solution

Essence of the solution:

1 – Decouple different types of operations (read-only, write to

adjacent nodes, changing node data) .

2 – Use smart partitioning strategies to decrease communication.

3 – Shared memory; data not need to be moved.

4 – Optimized for power law graph.

Contributions and Notes

1 – Achieved the five goals,
with minimal trade-offs.

2 – Thorough analysis

3 – The research is built on
assuming natural graphs are
power laws.

References

1 – Gonzalez, Joseph E., Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. "Powergraph: distributed graph-parallel computation on
natural graphs." In OSDI, vol. 12, no. 1, p. 2. 2012.

2 – Low, Yucheng, Joseph E. Gonzalez, Aapo Kyrola, Danny Bickson,
Carlos E. Guestrin, and Joseph Hellerstein. "Graphlab: A new framework
for parallel machine learning." arXiv preprint arXiv:1408.2041 (2014).

3 – Malewicz, Grzegorz, Matthew H. Austern, Aart JC Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. "Pregel: a
system for large-scale graph processing." In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data, pp.
135-146. ACM, 2010.

Questions

- The paper makes use of power law, what about other
properties in natural graphs?

- How does the nature of the algorithm impacts the
framework?

- How does PowerGraph compares with GraphLab and Pregel?

