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New Problem

Previous frameworks are inefficient for power law

graphs




Challenges

1 - Work Balance

2 - Communication
3 - Storage

4 - Partitioning

5 - Computation




GAS system

interface GASVertexProgram(u) ({
// Run on gather_nbrs (u)
gather (D, D(u’v), D,) — Accum
sum (Accum left, Accum right) — Accum
apply (D,, Accum) — D;="
// Run on scatter_nbrs (u)

scatter (D,®%, Dy, Dv) — (Dpr", Accum)

()’




Delta Caching

// gather_nbrs: IN_NBRS
gather (D,, D(u,v), . )5e
return D,.rank / #outNbrs(v)
sum(a, b): return a + b
apply (Dy, acc):
rnew = 0.15 + 0.85 * acc
D,.delta = (rnew - D,.rank)/
$outNbrs (u)
D,.rank = rnew
// scatter_nbrs: OUT_NBRS
scatter (D,, D(,,,,.) o)
if(|Dy.delta|>€) Activate (v)
return delta

- Avoids re-gather-ing of data
of unchanged neighbors.

- Optional
- Not always possible

- Useful for power law graphs.




Interface Comparison

// gather_nbrs: IN_NBRS Message combiner (Message ml, Message m2)
gather(D,,, D(u v)' Dv): r_eturn Message (ml.value() + m2.value());
’ void PregelPageRank (Message msqg)
return D,.rank / #outNbrs(v) float total = msg waluel):
sum(a, b): return a + b vertex.val = 0.15 + 0.85«total;
foreach(nbr in out_neighbors)

apply (Dy, acc): SendMsg (nbr, vertex.val/num_out_nbrs);
rnew = 0.15 + 0.85 * acc
D,.delta = (rnew - D,.rank)/
$outNbrs (u)
D,.rank = rnew

// scatter_nbrs: OUT_NBRS i GraphniipaqeRanl: (s )
voi raphLabPageRan cope scope
scatter (Du,D(u,v),Dv) . float accum = 0;
if ( |Du- delta | >€) Activate (V) foreach (nbr in scope.in_nbrs)
accum += nbr.val / nbr.nout_nbrs();

return delta vertex.val = 0.15 + 0.85 * accum;
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Vertex Cut vs. Edge Cut
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Figure 4: (a) An edge-cut and (b) vertex-cut of a graph into
three parts. Shaded vertices are ghosts and mirrors respectively.




Partition Design Decisions

1 - Put each edge on one machine.
2 - Put replicas of vertices on different machines.

3 - Elect one replica as master and others as mirrors, maintain
consistency in a centralized fashion.

4 — Minimize replicas to minimize communication and duplication of
data.




Communication
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Figure 5: The communication pattem of the PowerGraph ab-
straction when using a vertex-cut. Gather function runs locally
on each machine and then one accumulators is sent from each
mirror to the master. The master runs the apply function and
then sends the updated vertex data to all mirrors. Finally the
scatter phase is run in parallel on mirrors.
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Vertex Cut vs. Edge Cut

Vertex Cut

1 - Minimizes vertex cuts -
replicas in powerGraph

2 - Efficient to compute

Edge Cut

1 - Hard to compute with
power law graphs.

2 - Even if computed, not
suitable for PowerGraph.

3 - When random, most edges
will be cut.
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Vertex Cut Computation

Random Greedy

Case 1: If A(u) and A(v) intersect, then the edge should be
assigned to a machine in the intersection.

ASSign eaCh ed ge to a d iffe rent Case 2: If A(u) and A(v) are not empty and do not intersect,
. . then the edge should be assigned to one of the machines
maCh inein pa ra IIEI. from the vertex with the most unassigned edges.

Case 3: If only one of the two vertices has been assigned, then
choose a machine from the assigned vertex.

Case 4: If neither vertex has been assigned, then assign the
edge to the least loaded machine.




Implementations
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3 - Random Figure 8: (a,b) Replication factor and runtime of graph ingress

for the Twitter follower network as a function of the number of
machines for random, oblivious, and coordinated vertex-cuts.
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Implementations

1 - Synchronized

2 - Asynchronized
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3 - Asynchronized and
Serializable
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Parallel Locking

Async Serializable
PowerGraph

1 - Use Parallel Locking

2 - Extend Chandy-Misra
Solution

3 - Each mirror attempts to
acquire its own locks.

GraphLab
1 - Sequential Locking
2 - Use Dijkstra

3 - Suitable only when nodes
degrees are small.




Comparison with Pregel and GraphLab
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Summary of the solution

Essence of the solution:

1 - Decouple different types of operations (read-only, write to
adjacent nodes, changing node data) .

2 — Use smart partitioning strategies to decrease communication.
3 — Shared memory; data not need to be moved.

4 — Optimized for power law graph.




Contributions and Notes

1. An analysis of the challenges of power-law graphs
in distributed graph computation and the limitations

of existing graph parallel abstractions (Sec.2and 3). ] — ACh ieved the five gOa l,S y
2. The PowerGraph abstraction (Sec. 4) which factors Wlth m | n | ma l trade_offs

individual vertex-programs.

3. Adelta caching procedure which allows computation _ 1
state to be dynamically maintained (Sec. 4.2). 2 ThO rou gh ana lySIS

4. A new fast approach to data layout for power-law 3 - The resea rCh iS built on
graphs in distributed environments (Sec. 5).

5. An theoretical characterization of network and stor- ~ d9SUIM I n g natura l gra p hS are
age (Theorem 5.2, Theorem 5.3). powe r laWS.

6. A high-performance open-source implementation of
the PowerGraph abstraction (Sec. 7).

7. A comprehensive evaluation of three implementa-
tions of PowerGraph on a large EC2 deployment
using real-world MLDM applications (Sec. 6 and 7).
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- The paper makes use of power law, what about other
properties in natural graphs?

- How does the nature of the algorithm impacts the
framework?

- How does PowerGraph compares with GraphLab and Pregel?




