Scalability! But at what
COST?

Frank McSherry, Michael Isard, Derek G. Murray

Presented by: Patrick Insinger

“You can have a second computer once you’ve
shown you know how to use the first one.”
—Paul Barham

50 T 1000 f

system B 100 ¥

seconds

1 10 100 300 1 10 100 300
cores cores

Figure 1: Scaling and performance measurements
for a data-parallel algorithm, before (system A) and
after (system B) a simple performance optimization.
The unoptimized implementation ‘‘scales’ far better,
despite (or rather, because of) its poor performance.

While nearly all such publications detail their system’s
impressive scalability, few directly evaluate their
absolute performance against reasonable benchmarks.

To what degree are these systems truly improving
performance, as opposed to parallelizing overheads
that they themselves introduce?

|dea: Evaluate COST

e COST = Configuration that outperforms the best single threaded
implementation
* Problem & data specific (e.g. the cost for solving PageRank on twitter_rv)
* In this paper, configuration = # of cores
* Somewhat formally: COST = core_count for which runtime of parallel system =

runtime of single-threaded implementation
* Disclaimer

* The comparisons are neither perfect nor always fair, but the conclusions are
sufficiently dramatic that some concern must be raised

Graph Computation of Interest: PageRank

name | twitter_rv [13] | uk-2007-05 [5, 6]

scalable system cores | twitter | uk-2007-05 nodes 41.652.230 105.896.555
GraphChi [12] 2 3160s 6972s edges | 1,468,365,182 3,738,733,648
Stratosphere [8] 16 2250s - S1ze >.76GB 14.72GB
X-Stream [21] 16 1488s -
Spark [10] 128 8575 17595 Table 1: The “twitter_rv”’ and “uk-2007-05" graphs.
Giraph [10] 128 596s 1235s
GraphLab [10] 128 249s 833s
fn PageRank20 (graph: GraphIterator, alpha: £32) {
GraphX [10] 128 4195 4628 let mut a = vec![0£32; graph.nodes()];
let mut b = vec![0£32; graph.nodes()];
Single thread (SSD) 1 3005 6515 let mut d = vec![0£32; graph.nodes()];
Single thread (RAM) 1 2755 - graph.map_edges (1%, y| { d[x] += 1; });
for iter in 0..20 {
for 1 i? O..graph.ngdes() { -
Table 2: Reported elapsed times for 20 PageRank it- T - iigga-*aiéii; fan
erations, compared with measured times for single- }
threaded implementations from SSD and from RAM. graph.map_edges (Ix, vyl { aly] += blxl; });

}
GraphChi and X-Stream report times for S Page-)

Rank iterations, which we multiplied by four.
Figure 2: Twenty PageRank iterations.

PageRank: Improved Single Threaded
Performance

e Significant performance improvements by using Hilbert curve to
order edges, taking advantage of cache locality

-

PageRank: Improved Single Threaded
Performance

e Significant performance

. . . scalable system cores | twitter | uk-2007-05
improvements by using H_|Ibert GraphLab o5 T340 TER
curve to order edges, taking GraphX 128 | 4195 462s

: Vertex order (SSD) 1 300s 651s

advantage of cache locality Vertex oot RAM) |] s _

* Transformation takes 179 s for Hilbert order (SSD) | 1| 242 2565
Hilbert order (RAM)] 110s -

twitter, authors say this can be a

performa nce win even if pre- Table 4: Reported elapsed times for 20 PageRank it-

processin g is counted a gainst erations, compared with measured times for single-
runtime threaded implementations from SSD and from RAM.

The single-threaded times use identical algorithms,
e 110+ 179 = 289 > 249 but with different edge orders.

PageRank: The COST

 Naiad has a COST of 16 cores on
PageRank twitter

* Graphlab, not presented to the

right, has a COST of 512 cores
for PageRank twitter

* GraphX does not intersect the
single-threaded measurement so
it has unbounded COST

20T . Vertex SSD 460
C-
Cr %,
L L) A
10 /7“36 d
Hilbert RAM Vertex SSD

100 t
o Hilbert RAM

—

seconds
seconds

Y,

} 4 50 Il J
16 100 512 64 100 512

cores cores

Figure 5: Published scaling measurements for Page-
Rank on twitter_rv. The first plot is the time per
warm iteration. The second plot is the time for ten it-
erations from a cold start. Horizontal lines are single-
threaded measurements.

Graph Computation of Interest: Connected
Components

scalable system cores | twitter | uk-2007-05
Stratosphere [8] 16 950s -
X-Stream [21] 16 1159s -
Spark [10] 128 1784s > 8000s
Giraph [10] 128 200s > 8000s
GraphLab [10] 128 242s 714s
GraphX [10] 128 251s 800s
Single thread (SSD) 1 153s 417s

Table 3: Reported elapsed times for label propa-
gation, compared with measured times for single-
threaded label propagation from SSD.

fn LabelPropagation (graph: GraphIterator) {
let mut label = (0..graph.nodes()) .to_vec();
let mut done = false;

while !done {
done = true;
graph.map_edges (|x, y| {

if label([x] !'= labelly] {
done = false;
label[x] = min(label[x], labell(y]);
label[y] = min(label[x], labelly]);

Figure 3: Label propagation.

Connected Components: Single Thread
Improvements

* The label propagation algorithm e e o vec ()
is used for graph connectivity not het mub ramkc = [Ougi graph.nodes 017
because it is a good algorithm, T hile (x 1o mootial) | x = zoot[x]; 1
. . . R while ('= root[vy]) { = root[y]; }
but because it fits within the ok i—y v !
" . R 1T match rankf x] .cmp &rankEy]) {
think like a vertex bess > (xootixl - yi),
. reater => root[y] = x; 1},
computational model. Fqual —» { toot[v] — xi renk(x] t= 15),

Figure 4: Union-Find with weighted union.

Connected Components: The COST

 Naiad UF Slow: uses hash tables
COST = 10 cores

* Naiad UF: uses arrays
COST = 16 cores

* Tradeoff: hash tables don’t
require node IDs falling in a sk
compact set of integers

Figure 6: Two Naiad implementations of union find.

Conclusion: What drives COST

* Computation model restricts programs that can be expressed
* Target hardware reflects different tradeoffs

* Implementation may add overheads that a single thread doesn’t
require

Conclusion: Some legitimate reasons for high
COST

* Targeting a different set of problems

 Suited for a different deployment

* Prototype designed to assess components of a full system
* Integration with existing ecosystem

* High availability

Conclusion

* We stress that these problems lie not necessarily with the systems
themselves, which may be improved with time, but rather with the
measurements that the authors provide and the standard that
reviewers and readers demand.

