
Scalability! But at what 
COST?

Frank McSherry, Michael Isard, Derek G. Murray

Presented by: Patrick Insinger



“You can have a second computer once you’ve
shown you know how to use the first one.” 

–Paul Barham 





While nearly all such publications detail their system’s 
impressive scalability, few directly evaluate their 

absolute performance against reasonable benchmarks.

To what degree are these systems truly improving 
performance, as opposed to parallelizing overheads 

that they themselves introduce? 



Idea: Evaluate COST

• COST = Configuration that outperforms the best single threaded 
implementation

• Problem & data specific (e.g. the cost for solving PageRank on twitter_rv) 

• In this paper, configuration = # of cores

• Somewhat formally: COST = core_count for which runtime of parallel system = 
runtime of single-threaded implementation

• Disclaimer

• The comparisons are neither perfect nor always fair, but the conclusions are 
sufficiently dramatic that some concern must be raised 



Graph Computation of Interest: PageRank



PageRank: Improved Single Threaded 
Performance
• Significant performance improvements by using Hilbert curve to 

order edges, taking advantage of cache locality



PageRank: Improved Single Threaded 
Performance
• Significant performance 

improvements by using Hilbert 
curve to order edges, taking 
advantage of cache locality
• Transformation takes 179 s for 

twitter, authors say this can be a 
performance win even if pre-
processing is counted against 
runtime
• 110 + 179 = 289 > 249



PageRank: The COST

• Naiad has a COST of 16 cores on 
PageRank twitter
• GraphLab, not presented to the 

right, has a COST of 512 cores 
for PageRank twitter
• GraphX does not intersect the 

single-threaded measurement so 
it has unbounded COST



Graph Computation of Interest: Connected 
Components



Connected Components: Single Thread 
Improvements
• The label propagation algorithm 

is used for graph connectivity not 
because it is a good algorithm, 
but because it fits within the 
“think like a vertex” 
computational model.



Connected Components: The COST

• Naiad UF Slow: uses hash tables 
COST = 10 cores
• Naiad UF: uses arrays

COST = 16 cores
• Tradeoff: hash tables don’t 

require node IDs falling in a 
compact set of integers



Conclusion: What drives COST

• Computation model restricts programs that can be expressed
• Target hardware reflects different tradeoffs
• Implementation may add overheads that a single thread doesn’t 

require



Conclusion: Some legitimate reasons for high 
COST
• Targeting a different set of problems
• Suited for a different deployment
• Prototype designed to assess components of a full system
• Integration with existing ecosystem
• High availability



Conclusion

• We stress that these problems lie not necessarily with the systems 
themselves, which may be improved with time, but rather with the
measurements that the authors provide and the standard that 
reviewers and readers demand. 


