
GraphChi: Large-Scale
Computation on Just a PC

6.886
Joana M. F. da Trindade

Apr 5th 2019

Motivation
Large graphs are everywhere: social networks, web graphs, protein interaction,

Cannot be naturally decomposed into smaller parts for parallel processing, so just
using MapReduce is inefficient

At the time (2012) some distributed systems tried to address this:
- Specialized graph processing: Pregel, GraphLab
- General: Piccolo and Spark

Born out of frustration with distributed computing: if graph fits into disk, can we
perform advanced graph computations on just a personal computer?

Why is it so hard to efficiently use local storage?
This class so far has covered some of the reasons :-)
- Specialized external versions of algorithms needed to use I/O efficiently

Large graphs (multiple TBs) may be sparse and irregular

Irregular -> a vertex can be connected to any other vertex; little locality

Sparse -> graphs with power-law degree distributions have a long tail of nodes
with small amount of in/out edges

Sparsity and irregularity -> random access fetching small amounts of data

Can’t we just throw more machines at the problem?
Costly
- More engineers required to manage cluster infrastructure
- More machines -> higher total energy consumption

Utilization
- W/o efficient external memory algorithms, no guarantee of better utilization (e.g.,
load imbalance, idle machines waiting for stragglers)

Slower
- Total time = local algo + time for message exchange and cluster coordination

Authors: let’s instead better utilize our single node

[GraphChi OSDI 2012 slides]

Computational model: vertex-centric

[GraphChi OSDI 2012 slides]

Computational model: vertex-centric

[GraphChi OSDI 2012 slides]

Problem: still have random access in vertex-centric
Assumptions:

- Graph is large enough to fit disk, but not in memory
- Data for all in/out edges of any single vertex fit in memory

Requires random reads/writes across vertex partitions to process in/out edges

[GraphChi 6.886 Spring 2018 slides]

Options to avoid random access for vertex-centric

[GraphChi OSDI 2012 slides]

This paper: Parallel Sliding Windows (PSW)
Reduce random access by collocating vertex data with edge data:

Process one subgraph at a time in 3 stages: (1) load subgraph from disk, (2)
update vertices and edges, and (3) write updated values to disk

GraphChi main execution flow

Load stage: example PSW with 4 intervals

Load all
in-edges in
memory

Out-edges
arranged in
sequence in
other shards

Out-edge blocks

Load stage: example PSW with 4 intervals

Next shard is
loaded into
memory

Sliding shards
move forward
to match it

Load stage: example PSW with 4 intervals

Next shard is
loaded into
memory

Sliding shards
move forward
to match it

Load stage: example PSW with 4 intervals

Next shard is
loaded into
memory

Sliding shards
move forward
to match it

Load stage: example PSW with 4 intervals

Update stage
Update-function is executed on vertices in the interval

Edges point to in-memory data blocks

[GraphChi OSDI 2012 slides]

Commit stage
Blocks written back to disk

Next load-phase sees preceding writes

[GraphChi OSDI 2012 slides]

Optimization: dynamic selective scheduling
When active set is sparse (e.g., traversal algos), it is inefficient to process all
edges

Their solution: coarse-grained selection:

- Further splits shards into sub-indices
- When neighbors are activated, sets a bit mask
- Loops through bit-mask to figure out which sub-indices to split

Other optimizations in the paper, e.g., buffered updates for evolving graphs

Advantages of PSW
Less random access when compared to other solutions:

- Most reads are performed over sequential chunks

P shards requires only P2 random reads (across sliding shards)

Each edge in a single graph full scan:

- Only read up to 2 times
- Only written up to 2 times

Drawbacks of PSW
Costly initial pre-processing to ensure sorting order within shards

- E.g., takes 10 min to load twitter 2010 graph (|V| = 42M, |E| = 1.5B)

Storage overhead: vertex value is duplicated

Results with selective scheduling not included in the paper

Does not do well when compared to competing system at the time

- PowerGraph (distributed version of Graphlab), which uses
Gather-Apply-Scatter (GAS) for vertex-partitioning better suited for power-law

Evaluation
Comparison against inconsistent system configurations

Versus Hadoop-based Pegasus

- Single node GraphChi: 27min; Pegasus w/ 100 machines: 22 min

Versus in-memory systems

- 2x slower than single-node GraphLab
- 2x slower than 50-node Spark

Evaluation: datasets

Evaluation: vs other systems (inconsistent configs)

Evaluation: micro-benchmarks
- Performance scales linearly as function of disks
- Little benefits from multithreading when comp. complexity is low (saturates I/O)
- Large benefits when using larger blocks, as less I/O is required

Conclusion
Processing graphs that fit in disk but do not fit in memory is challenging

Authors propose Parallel Sliding Windows (PSW) as a way to reduce random
access for graph computation

Core contribution: on-disk graph partitioning targeted for vertex-centric model that
minimizes random reads / writes

Results were encouraging: beats distributed systems with 10s of nodes

However, distributed systems with alternative partitioning can still do better (e.g.,
PowerGraph using GAS for vertex partitioning)

