
WONDERLAND
A NOVEL ABSTRACTION-BASED OUT-OF-CORE

GRAPH PROCESSING SYSTEM

Mingxing Zhang, Yongwei Wu, Youwei Zhuo, Xuehai Qian, Chengying Huan, Kang Chen

Presented by Divya Gopinath

6.886 Spring 2019

AGENDA

• Motivation

• Background: out-of-core processing & graph abstraction

• System implementation

• Case study & benchmarking

• Conclusion

• Discussion

2

AGENDA

• Motivation

• Background: out-of-core processing & graph abstraction

• System implementation

• Case study & benchmarking

• Conclusion

• Discussion

3

MOTIVATION

Graphs are everywhere, and require iterative algorithms to

process input graph.

• How can we design an algorithm that isn’t fully in-memory

or distributed? Out-of-core

• How can we reduce graph size? Abstraction

4

OUT-OF-CORE PROCESSING

• Equivalent to disk-based single-

machine systems (external memory

model)

• Small portion of graph in main memory

• Spill remainder to disk

• Shift from reducing slow random disk I/O

to improving convergence speed

BACKGROUND

Disk

Main memory

5

• Improve execution efficiency of

algorithm

• Concise lossy representation of original

graph

• Bootstrap initial result to accelerate

convergence

• Fit abstraction in memory

GRAPH ABSTRACTION

BACKGROUND

6

BACKGROUND

7

How do we apply the out-of-core model to a graph processing

framework that uses abstraction in some way?

BACKGROUND

Challenge 1: Performance

Most existing techniques assume original graph can be contained in memory–

how do we adapt this for out-of-core systems? Transformations can be complex

of need multiple passes through input data.

8

How do we apply the out-of-core model to a graph processing

framework that uses abstraction in some way?

BACKGROUND

How do we apply the out-of-core model to a graph processing

framework that uses abstraction in some way?

Challenge 1: Performance

Most existing techniques assume original graph can be contained in memory–

how do we adapt this for out-of-core systems? Transformations can be complex

of need multiple passes through input data.

Challenge 1I: Programmability

Adding vertices/edges not in the original graph to create the abstraction makes

programming harder– may require application-specific algorithms to recover the

initial result.

9

BACKGROUND

OUT-OF-CORE GRAPH PROCESSING

GraphChi Vertex-centric

X-Stream Edge-centric

Interval(1) Interval(2) Interval(3) …

Shuffle() – external sort to provide updates

Scatter() – read all edges and output updates as stream

Gather() – apply updates

10

BACKGROUND

OUT-OF-CORE GRAPH PROCESSING

Grid graph Partition based

• Partition edges into P x P grids

• Each partition contains vertices within contiguous range

• Define edge function that updates dst from src

1 2

3 4

P = 2
Vertex 1
Vertex 2

Vertex 3
Vertex 4

Vertex 1
Vertex 2

(1, 2)
(2, 1)

(1, 3)
(2, 4)

Vertex 3
Vertex 4

(3, 2)
(4, 2)

(4, 3)

11

BACKGROUND

OUT-OF-CORE GRAPH PROCESSING

Grid graph Partition based

• Partition edges into P x P grids

• Each partition contains vertices within contiguous range

• Define edge function that updates dst from src

1 2

3 4

P = 2
Vertex 1
Vertex 2

Vertex 3
Vertex 4

Vertex 1
Vertex 2

(1, 2)
(2, 1)

(1, 3)
(2, 4)

Vertex 3
Vertex 4

(3, 2)
(4, 2)

(4, 3)

Common patterns:

Disjoint partitions

Fixed processing order

12

BACKGROUND

OUT-OF-CORE GRAPH PROCESSING
WITH ABSTRACTION

• Create abstractions that consist only of vertices and edges existing in

original graph (select subset of edge set)

• Enforces application-independent abstractions

• Possible to generate an abstraction with a single-pass read of original graph

13

Challenge 1: Performance Challenge II: Programmability

AGENDA

• Motivation

• Background: out-of-core processing & graph abstraction

• System implementation

• Case study & benchmarking

• Conclusion

• Discussion

14

WONDERLAND: OVERVIEW

1 // Abstraction Generation

2 abstraction = on-disk = {}

3 while not graph.empty()

4 abstraction = {abstract, graph.PopN(...)}

5 abstract, deleted = Select(abstract, X)

6 on-disk = {on-disk, deleted}

7

8 // Query Processing

9 foreach query

10 in_memory_graph = {abstract}

11 while not converge

12 Process(query, in_memory_graph)

13 load = Choose(on-disk)

14 in_memory_graph = {abstract, load}

Data model same as Gridgraph:

Mutable vertex property

Read-only edges

Two-phase workflow:

Abstraction generation

Query processing

15

16

1 // Abstraction Generation

2 abstraction = on-disk = {}

3 while not graph.empty()

4 abstraction = {abstract, graph.PopN(...)}

5 abstract, deleted = Select(abstract, X)

6 on-disk = {on-disk, deleted}

7

8 // Query Processing

9 foreach query

10 in_memory_graph = {abstract}

11 while not converge

12 Process(query, in_memory_graph)

13 load = Choose(on-disk)

14 in_memory_graph = {abstract, load}

Initialize empty abstraction

Expand abstraction with edges from graph

Select set of X edges to remain in abstraction

Edges not selected dumped/streamed to disk

17

1 // Abstraction Generation

2 abstraction = on-disk = {}

3 while not graph.empty()

4 abstraction = {abstract, graph.PopN(...)}

5 abstract, deleted = Select(abstract, X)

6 on-disk = {on-disk, deleted}

7

8 // Query Processing

9 foreach query

10 in_memory_graph = {abstract}

11 while not converge

12 Process(query, in_memory_graph)

13 load = Choose(on-disk)

14 in_memory_graph = {abstract, load}

Suitable for out-of-core systems!

Only expanded abstract loaded into memory in each

iteration; limited edges selected

Original graph read only once

Generated abstraction only has edges from original

graph

Initialize empty abstraction

Expand abstraction with edges from graph

Select set of X edges to remain in abstraction

Edges not selected dumped/streamed to disk

18

1 // Abstraction Generation

2 abstraction = on-disk = {}

3 while not graph.empty()

4 abstraction = {abstract, graph.PopN(...)}

5 abstract, deleted = Select(abstract, X)

6 on-disk = {on-disk, deleted}

7

8 // Query Processing

9 foreach query

10 in_memory_graph = {abstract}

11 while not converge

12 Process(query, in_memory_graph)

13 load = Choose(on-disk)

14 in_memory_graph = {abstract, load}

Initialize empty abstraction

Expand abstraction with edges from graph

Select set of X edges to remain in abstraction

Edges not selected dumped/streamed to disk

Only store abstracted graph in memory

Part of on-disk graph chosen to load into memory

New in-memory subgraph created

Compute on entire graph, or a round

Compute on a subgraph, or an iteration

1 // Abstraction Generation

2 abstraction = on-disk = {}

3 while not graph.empty()

4 abstraction = {abstract, graph.PopN(...)}

5 abstract, deleted = Select(abstract, X)

6 on-disk = {on-disk, deleted}

7

8 // Query Processing

9 foreach query

10 in_memory_graph = {abstract}

11 while not converge

12 Process(query, in_memory_graph)

13 load = Choose(on-disk)

14 in_memory_graph = {abstract, load}

19

GridGraph – information propagation is limited per

round (each edge processed once), so slower

convergence

Wonderland – Abstraction is a “bridge”, and

common abstractions are shared among iterations

Only store abstracted graph in memory

Part of on-disk graph chosen to load into memory

New in-memory subgraph created

Compute on entire graph, or a round

Compute on a subgraph, or an iteration

1 // Abstraction Generation

2 abstraction = on-disk = {}

3 while not graph.empty()

4 abstraction = {abstract, graph.PopN(...)}

5 abstract, deleted = Select(abstract, X)

6 on-disk = {on-disk, deleted}

7

8 // Query Processing

9 foreach query

10 in_memory_graph = {abstract}

11 while not converge

12 Process(query, in_memory_graph)

13 load = Choose(on-disk)

14 in_memory_graph = {abstract, load}

20

1 // Abstraction Generation

2 abstraction = on-disk = {}

3 while not graph.empty()

4 abstraction = {abstract, graph.PopN(...)}

5 abstract, deleted = Select(abstract, X)

6 on-disk = {on-disk, deleted}

7

8 // Query Processing

9 foreach query

10 in_memory_graph = {abstract}

11 while not converge

12 Process(query, in_memory_graph)

13 load = Choose(on-disk)

14 in_memory_graph = {abstract, load}

21

How do we select edges for our

abstraction that will be suitable for a

variety of applications?

1

How do we reduce the number of

random disk accesses?

2

How do we implement the choose

function that decides which part of the

on-disk graph we load next?

3

What is a user-friendly, intuitive way of

programming the process function?

4

SELECTING EDGES

What do users need to provide?

1

// Input
X = size of abstraction
B = the number of edges loaded per iteration
S = maximum size of each edge grid
W = width of grid

1
2
3
4
5

In practice, setting B/X = 0.25 is a reasonable choice.

Picking X a bit harder– we’ll come back to this.

SELECTING EDGES

What do users need to provide?

What level of abstraction do we

give to the user?

1

// Input
X = size of abstraction
B = the number of edges loaded per iteration
S = maximum size of each edge grid
W = width of grid

1
2
3
4
5

In practice, setting B/X = 0.25 is a reasonable choice.

Picking X a bit harder– we’ll come back to this.

Define low-level and high-level APIs for selecting edges:

• Select(vector<Edge>& abstract, size_t X)
• Arbitrary method to sort edges

Low-level API

• Edge-priority selection: EdgePriority(Edge e)
• Generate abstraction containing as few weakly

connected components as possible with disjoint-set
DS– first, join disconnected components, then add
edges by priority

High-level API

REDUCING DISK
ACCESSES

How do we store the graph in

memory, noting that we process in

grids?

2

Reduce random edge accesses:

• Abstraction edges at header because used in tandem

with all other grids

• Typically edges of abstraction are cached

Reduce random vertex accesses:

• Initially, we have a vertex file anyway!

• Possible that non-contiguous vertex IDs are

accesses…

IDnew=0 ... IDnew=x ... IDnew=|V|-1

Abstract edge grid Grid 0 ... Grid y

Vertex File

Edge File

Other verticesAbstract vertices

REDUCING DISK
ACCESSES

How do we store the graph in

memory, noting that we process in

grids?

2

Reduce random edge accesses:

• Abstraction edges at header because used in tandem

with all other grids

• Typically edges of abstraction are cached

Reduce random vertex accesses:

• Initially, we have a vertex file anyway!

• Possible that non-contiguous vertex IDs are

accesses…

• Remap so abstract vertices are at header (but order

preserved as much as possible)

1 2 3 4
Abstract

vertices:

2, 42 4 1 3

IDnew=0 ... IDnew=x ... IDnew=|V|-1

Abstract edge grid Grid 0 ... Grid y

Vertex File

Edge File

Other verticesAbstract vertices

REDUCING DISK
ACCESSES

How do we store the graph in

memory, noting that we process in

grids?

2

How is the remapping done in practice?

• Keep in-memory vector with abstract vertices

• Binary search on this. For a given vertex X, we

know: 1) is it in the abstraction and 2) the number

of vertices Y remaining in the abstract with smaller

ID than X

• If it remained, remap to Y

• If it was removed, remap to X –Y + (number of

vertices that remained in abstract)

1 2 3 4
Abstract

vertices:

2, 42 4 1 3

IDnew=0 ... IDnew=x ... IDnew=|V|-1

Abstract edge grid Grid 0 ... Grid y

Vertex File

Edge File

Other verticesAbstract vertices

REDUCING DISK
ACCESSES

How do we store the graph in

memory, noting that we process in

grids?

2

IDnew=0 ... IDnew=x ... IDnew=|V|-1

Abstract edge grid Grid 0 ... Grid y

Vertex File

Edge File

Other verticesAbstract vertices

How are edges stored?

• If a grid contains 𝑋 edges and is above the memory

limit, partitioned into 𝑋/𝑆 edges (either randomly

or by priority)

• Edges contiguously stored in CSR format (locating

outgoing edges of a vertex in constant time)

• Grids are always loaded as a whole

REDUCING DISK
ACCESSES

How do we store the graph in

memory, noting that we process in

grids?

2

IDnew=0 ... IDnew=x ... IDnew=|V|-1

Abstract edge grid Grid 0 ... Grid y

Vertex File

Edge File

Other verticesAbstract vertices

How are edges stored?

• If a grid contains 𝑋 edges and is above the memory

limit, partitioned into 𝑋/𝑆 edges (either randomly

or by priority)

• Edges contiguously stored in CSR format (locating

outgoing edges of a vertex in constant time)

• Grids are always loaded as a whole

How many passes through the edge list is required for

grid partitioning?

Counting edges per grid (1)

Write edges to locations (1)

Total: 2 passes

REDUCING DISK
ACCESSES

How do we store the graph in

memory, noting that we process in

grids?

2

IDnew=0 ... IDnew=x ... IDnew=|V|-1

Abstract edge grid Grid 0 ... Grid y

Vertex File

Edge File

Other verticesAbstract vertices

How are edges stored?

• If a grid contains 𝑋 edges and is above the memory

limit, partitioned into 𝑋/𝑆 edges (either randomly

or by priority)

• Edges contiguously stored in CSR format (locating

outgoing edges of a vertex in constant time)

• Grids are always loaded as a whole

How many passes through the edge list is required for

grid partitioning?

Counting edges per grid (1)

Write edges to locations (1)

Total: 2 passes

Combine first pass with remapping procedure.

Preprocessing total: 3 passes of edges (selecting

abstraction, remapping, partitioning)

CHOOSING EDGES
FROM DISK

How do we select what edges we

load from disk to get our in-

memory graph?

3

Problem: this is very application-specific, and we wanted

to develop an application-agnostic framework.

First, enforce users can only choose grid partitions.

Have users specify the order in which they evaluate

grids to enforce a scheduling.

EXECUTION OF
QUERY

How do we actually express an

algorithm, or process, to run a

query on the graph?

4

Do-it-yourself
Low-

level API

• Define Process(Graph& g) function

• Given a vector of loaded grids, including
abstraction

“Think like a vertex”
High-

level API

• Define function to process on a per-vertex
basis

• Provide multi-threaded executor to parallelize

• Reuse execution engine already present in
literature

EXECUTION OF
QUERY

How do we actually express an

algorithm, or process, to run a

query on the graph?

4

Low-level API

Process(Graph& g)

Given a list of grids (including abstraction, which is a

special grid), user has access to:

• List of edges in the grid

• Smallest and largest ID of source vertices

• Access to endpoints for each vertex

EXECUTION OF
QUERY

How do we actually express an

algorithm, or process, to run a

query on the graph?

4

Low-level API

Process(Graph& g)

Given a list of grids (including abstraction, which is a

special grid), user has access to:

• List of edges in the grid

• Smallest and largest ID of source vertices

• Access to endpoints for each vertex

High-level API

func VertexProgram(Graph& g, Index u)
// Iterating loaded edges
foreach grid in g.loaded_grids

foreach edge in [grid.StartEdge(u),
grid.EndEdge(u)]

ProcessEdge(g.Vertex(u), edge,
g.Vertex(edge.destination))

// Update priority of grids
foreach grid in g.all_grids

if u >= grid.EndVertex(): continue
if u < grid.StartVertex(): continue
UpdatePriority(g.Vertex(u), g.Priority(grid))

FINAL IMPLEMENTATION
SKETCH

// Input
X = size of abstraction
B = the number of edges loaded per iteration
S = maximum size of each edge grid
W = width of grid

// Generating Abstract
abstract = vector<Edge>()
on-disk = fstream(...)
while not graph.empty()
abstract = {abstract, graph.PopN(B)}
abstract, deleted = Select(abstract, X)

// Remapping and Partitioning
abstract, grids = Partition(abstract, on-disk)

// Processing Querys
foreach query
in_memory_graph = {abstract}
worklist = BootstrapWorklist(in_memory_graph, query)
while not converge

// Worklist-based processing
while not worklist.empty()

u = worklist.pop()
for e in in_memory_graph.loaded_edges(u)
ProcessEdge(u, e)
Append worklist accordingly

Update priority of grids accordingly
// Bootstrap next iteration
{grid1, grid2, ...} = Choose(grids, B)
in_memory_graph = {abstract, grid1, grid2, ...}
worklist = BootstrapWorklist(in_memory_graph, query)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

AGENDA

• Motivation

• Background: out-of-core processing & graph abstraction

• System implementation

• Case study & benchmarking

• Conclusion

• Discussion

35

CASE STUDY: SHORTEST-PATH

• Given a weighted graph with a source (src) and a destination (dst).

• Negative edge weights allowed, but no negative weight cycles.

• Attach a dist property to each vertex and run Dijkstra’s.

• Relaxation: dist[u] + w[u, v] < dist[v]

36

37

func VertexProgram(Graph& g, Index u)
float src_dist = g.Vertex(u).dist

// Iterating loaded edges
foreach grid in g.loaded_grids

foreach edge in [grid.StartEdge(u), grid.EndEdge(u))
float new_dist = src_dist + edge.weight
float& dst_dist = g.Vertex(edge.desination).dist
if new_dist < dst_dist

dst_dist = new_dist
g.Active(edge.destination)
Worklist.push(edge.destination)

// Update priority of grids
foreach i in [0, g.all_grids.size())

Grid& grid = g.all_grids[i]
if u >= grid.EndVertex(): continue
if u < grid.StartVertex(): continue
float new_priority = -(src_dist + min_expect[i, dst])
if grid.priority < new_priority

grid.priority = new_priority

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Perform relaxation if necessary

“Activate” edge destination
Push to worklist or process all loaded vertices once

First, we define the necessary

steps for an edge relaxation…

38

func VertexProgram(Graph& g, Index u)
float src_dist = g.Vertex(u).dist

// Iterating loaded edges
foreach grid in g.loaded_grids

foreach edge in [grid.StartEdge(u), grid.EndEdge(u))
float new_dist = src_dist + edge.weight
float& dst_dist = g.Vertex(edge.desination).dist
if new_dist < dst_dist

dst_dist = new_dist
g.Active(edge.destination)
Worklist.push(edge.destination)

// Update priority of grids
foreach i in [0, g.all_grids.size())

Grid& grid = g.all_grids[i]
if u >= grid.EndVertex(): continue
if u < grid.StartVertex(): continue
float new_priority = -(src_dist + min_expect[i, dst])
if grid.priority < new_priority

grid.priority = new_priority

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Then, we need to update the

priority of the given grid.

Intuition: estimate lower-bound on

distance. The smaller this is, the

higher the priority.

39

func VertexProgram(Graph& g, Index u)
float src_dist = g.Vertex(u).dist

// Iterating loaded edges
foreach grid in g.loaded_grids

foreach edge in [grid.StartEdge(u), grid.EndEdge(u))
float new_dist = src_dist + edge.weight
float& dst_dist = g.Vertex(edge.desination).dist
if new_dist < dst_dist

dst_dist = new_dist
g.Active(edge.destination)
Worklist.push(edge.destination)

// Update priority of grids
foreach i in [0, g.all_grids.size())

Grid& grid = g.all_grids[i]
if u >= grid.EndVertex(): continue
if u < grid.StartVertex(): continue
float new_priority = -(src_dist + min_expect[i, dst])
if grid.priority < new_priority

grid.priority = new_priority

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Then, we need to update the

priority of the given grid.

Intuition: estimate lower-bound on

distance. The smaller this is, the

higher the priority.

Define min_expect[i, dst] for

each grid and each dst to be the

precalculated value of the lower

bound of a path starting from an

edge in each grid to dst.

40

func VertexProgram(Graph& g, Index u)
float src_dist = g.Vertex(u).dist

// Iterating loaded edges
foreach grid in g.loaded_grids

foreach edge in [grid.StartEdge(u), grid.EndEdge(u))
float new_dist = src_dist + edge.weight
float& dst_dist = g.Vertex(edge.desination).dist
if new_dist < dst_dist

dst_dist = new_dist
g.Active(edge.destination)
Worklist.push(edge.destination)

// Update priority of grids
foreach i in [0, g.all_grids.size())

Grid& grid = g.all_grids[i]
if u >= grid.EndVertex(): continue
if u < grid.StartVertex(): continue
float new_priority = -(src_dist + min_expect[i, dst])
if grid.priority < new_priority

grid.priority = new_priority

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Grid i

u
Current priority: p
But, if:
Vertex(u).dist + min_expect[i, dst] < p

Update priority with its negation

src

Then, we need to update the

priority of the given grid.

Intuition: estimate lower-bound on

distance. The smaller this is, the

higher the priority.

Define min_expect[i, dst] for

each grid and each dst to be the

precalculated value of the lower

bound of a path starting from an

edge in each grid to dst.

dst

41

func VertexProgram(Graph& g, Index u)
float src_dist = g.Vertex(u).dist

// Iterating loaded edges
foreach grid in g.loaded_grids

foreach edge in [grid.StartEdge(u), grid.EndEdge(u))
float new_dist = src_dist + edge.weight
float& dst_dist = g.Vertex(edge.desination).dist
if new_dist < dst_dist

dst_dist = new_dist
g.Active(edge.destination)
Worklist.push(edge.destination)

// Update priority of grids
foreach i in [0, g.all_grids.size())

Grid& grid = g.all_grids[i]
if u >= grid.EndVertex(): continue
if u < grid.StartVertex(): continue
float new_priority = -(src_dist + min_expect[i, dst])
if grid.priority < new_priority

grid.priority = new_priority

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Then, we need to update the

priority of the given grid.

Intuition: estimate lower-bound on

distance. The smaller this is, the

higher the priority.

Define min_expect[i, dst] for

each grid and each dst to be the

precalculated value of the lower

bound of a path starting from an

edge in each grid to dst.

Computing this could be hard, so

instead, we let each grid keep one

min_expect, which is the minimum

edge weight in the grid.

SHORTEST-PATH OPTIMIZATIONS

Graph
abstraction

Edge priority is negative of its weight

Lightest X edges always in abstraction

Upper-
bound

Processing a sequence of SP queries (not SSSP)

Can use current dist priorty of dst vertex as upper-bound of relaxation

Selecting
Loading

If all edges in grid are not activated, skip over

42

EVALUATION ENVIRONMENT

• Two 8-core Intel Xeon CPUs

• Set memory limits per query

• Compare against GridGraph and Galois, as well as out-of-core Galois (named

LigraChi-g)

• Average results from 30 query pairs

• Reported results on LiveJournal (790 MB) and Twitter (17 GB) graphs

43

SHORTEST-PATH
PERFORMANCE: BENCHMARKS

For high memory limits, devolves into fully in-

memory setting, and Galois and Wonderland

outperform GridGraph significantly.

For out-of-core system, Wonderland

outperforms GridGraph because of

abstraction (always keep certain things in

memory).

44

SHORTEST PATH CASE STUDY
PIECEWISE BREAKDOWN

Three sources of speedup:

1. Bootstrapping an initial result

2. Abstraction-enabled information propagation

3. Abstraction-guided priority scheduling

If only (1), speedups are limited as memory limit goes down

Adding (2), extra speedup across the board

Adding (3), extra speedup across the board

But, (1) most important if memory limit is relatively high

45

SHORTEST PATH CASE STUDY
ABSTRACTION SIZE SENSITIVITY

46

SHORTEST PATH CASE STUDY
MULTI-THREAD SPEEDUP

47

SHORTEST PATH CASE STUDY
SELECTIVITY SENSITIVITY

We define the selectivity of the query to denote how much of the graph

structure the query necessitates (# total paths)/(# paths we check):

• Any path queries: reachability, weakly-connected components (WCC)

• All path queries: shortest path (can be pruned from an exhaustive search, so

high-selectivity), widest path (maximize weight of min-weight edge)

48

SHORTEST PATH CASE STUDY
SELECTIVITY SENSITIVITY

We define the selectivity of the query to denote how much of the graph

structure the query necessitates:

• Any path queries: reachability, weakly-connected components (WCC)

• All path queries: shortest path (can be pruned from an exhaustive search, but

high-selectivity), widest path (maximize weight of min-weight edge)

49

PREPROCESSING TIME

50

Even for one query, Wonderland is faster than GridGraph.

SCOPE OF APPLICATION

• Higher speedup if problem has a higher selectivity (BFS, MST)

• Basic graph operations; could be extended to clustering, matching, flow, etc.

• Wonderland can also be faster in computing sparse matrix-vector

multiplication algos like PageRank, but due to Galois engine, not abstraction

51

AGENDA

• Motivation

• Background: out-of-core processing & graph abstraction

• System implementation

• Case study & benchmarking

• Conclusion

• Discussion

52

CONCLUSION

• Wonderland: novel, out-of-core graph processing framework

• Extract effective abstractions from original graph

• Use this to enable effective information propagation

• Use this to enable priority scheduling for faster convergence

• Drastic speedup over other state-of-the-art systems

53

DISCUSSION

• More information on tuning parameters during benchmarking

• Useful to see piecewise breakdown, but unclear how bootstrapping of initial

result happens

• Theoretical work into deriving bounds on the best X

• Paper laid out well but should have done a more thorough review of

literature– many of the concepts (besides abstraction) are not novel to this

paper in particular

54

