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MOTIVATION

Graphs are everywhere, and require iterative algorithms to 

process input graph.

• How can we design an algorithm that isn’t fully in-memory 

or distributed? Out-of-core 

• How can we reduce graph size? Abstraction
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OUT-OF-CORE PROCESSING

• Equivalent to disk-based single-

machine systems (external memory 

model)

• Small portion of graph in main memory

• Spill remainder to disk 

• Shift from reducing slow random disk I/O 

to improving convergence speed 

BACKGROUND

Disk

Main memory
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• Improve execution efficiency of 

algorithm 

• Concise lossy representation of original 

graph 

• Bootstrap initial result to accelerate 

convergence

• Fit abstraction in memory 

GRAPH ABSTRACTION

BACKGROUND
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BACKGROUND
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How do we apply the out-of-core model to a graph processing 

framework that uses abstraction in some way? 



BACKGROUND

Challenge 1: Performance

Most existing techniques assume original graph can be contained in memory–

how do we adapt this for out-of-core systems? Transformations can be complex 

of need multiple passes through input data. 

8

How do we apply the out-of-core model to a graph processing 

framework that uses abstraction in some way? 



BACKGROUND

How do we apply the out-of-core model to a graph processing 

framework that uses abstraction in some way? 

Challenge 1: Performance

Most existing techniques assume original graph can be contained in memory–

how do we adapt this for out-of-core systems? Transformations can be complex 

of need multiple passes through input data. 

Challenge 1I: Programmability

Adding vertices/edges not in the original graph to create the abstraction makes 

programming harder– may require application-specific algorithms to recover the 

initial result.
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BACKGROUND

OUT-OF-CORE GRAPH PROCESSING

GraphChi Vertex-centric

X-Stream Edge-centric 

Interval(1) Interval(2) Interval(3) …

Shuffle() – external sort to provide updates

Scatter() – read all edges and output updates as stream

Gather() – apply updates
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BACKGROUND

OUT-OF-CORE GRAPH PROCESSING

Grid graph Partition based

• Partition edges into P x P grids

• Each partition contains vertices within contiguous range 

• Define edge function that updates dst from src

1 2

3 4

P = 2
Vertex 1
Vertex 2

Vertex 3
Vertex 4

Vertex 1
Vertex 2
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(2, 1)

(1, 3)
(2, 4)

Vertex 3
Vertex 4
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(4, 3)
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BACKGROUND

OUT-OF-CORE GRAPH PROCESSING

Grid graph Partition based

• Partition edges into P x P grids

• Each partition contains vertices within contiguous range 

• Define edge function that updates dst from src

1 2

3 4

P = 2
Vertex 1
Vertex 2

Vertex 3
Vertex 4

Vertex 1
Vertex 2

(1, 2)
(2, 1)

(1, 3)
(2, 4)

Vertex 3
Vertex 4

(3, 2)
(4, 2)

(4, 3)

Common patterns:

Disjoint partitions

Fixed processing order
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BACKGROUND

OUT-OF-CORE GRAPH PROCESSING 
WITH ABSTRACTION

• Create abstractions that consist only of vertices and edges existing in 

original graph (select subset of edge set)

• Enforces application-independent abstractions

• Possible to generate an abstraction with a single-pass read of original graph
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Challenge 1: Performance Challenge II: Programmability



AGENDA

• Motivation

• Background: out-of-core processing & graph abstraction

• System implementation

• Case study & benchmarking

• Conclusion

• Discussion

14



WONDERLAND: OVERVIEW

1   // Abstraction Generation

2   abstraction = on-disk = {}

3   while not graph.empty()

4       abstraction = {abstract, graph.PopN(...)}

5       abstract, deleted = Select(abstract, X)

6       on-disk = {on-disk, deleted}

7 

8   // Query Processing

9   foreach query

10       in_memory_graph = {abstract}

11       while not converge

12           Process(query, in_memory_graph)

13           load = Choose(on-disk)

14           in_memory_graph = {abstract, load}

Data model same as Gridgraph:

Mutable vertex property

Read-only edges 

Two-phase workflow:

Abstraction generation

Query processing 
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1   // Abstraction Generation

2   abstraction = on-disk = {}

3   while not graph.empty()

4       abstraction = {abstract, graph.PopN(...)}

5       abstract, deleted = Select(abstract, X)

6       on-disk = {on-disk, deleted}

7 

8   // Query Processing

9   foreach query

10       in_memory_graph = {abstract}

11       while not converge

12           Process(query, in_memory_graph)

13           load = Choose(on-disk)

14           in_memory_graph = {abstract, load}

Initialize empty abstraction

Expand abstraction with edges from graph

Select set of X edges to remain in abstraction

Edges not selected dumped/streamed to disk 
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1   // Abstraction Generation

2   abstraction = on-disk = {}

3   while not graph.empty()

4       abstraction = {abstract, graph.PopN(...)}

5       abstract, deleted = Select(abstract, X)

6       on-disk = {on-disk, deleted}

7 

8   // Query Processing

9   foreach query

10       in_memory_graph = {abstract}

11       while not converge

12           Process(query, in_memory_graph)

13           load = Choose(on-disk)

14           in_memory_graph = {abstract, load}

Suitable for out-of-core systems!

Only expanded abstract loaded into memory in each 

iteration; limited edges selected

Original graph read only once

Generated abstraction only has edges from original 

graph

Initialize empty abstraction

Expand abstraction with edges from graph

Select set of X edges to remain in abstraction

Edges not selected dumped/streamed to disk 
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1   // Abstraction Generation

2   abstraction = on-disk = {}

3   while not graph.empty()

4       abstraction = {abstract, graph.PopN(...)}

5       abstract, deleted = Select(abstract, X)

6       on-disk = {on-disk, deleted}

7 

8   // Query Processing

9   foreach query

10       in_memory_graph = {abstract}

11       while not converge

12           Process(query, in_memory_graph)

13           load = Choose(on-disk)

14           in_memory_graph = {abstract, load}

Initialize empty abstraction

Expand abstraction with edges from graph

Select set of X edges to remain in abstraction

Edges not selected dumped/streamed to disk 

Only store abstracted graph in memory

Part of on-disk graph chosen to load into memory

New in-memory subgraph created

Compute on entire graph, or a round

Compute on a subgraph, or an iteration



1   // Abstraction Generation

2   abstraction = on-disk = {}

3   while not graph.empty()

4       abstraction = {abstract, graph.PopN(...)}

5       abstract, deleted = Select(abstract, X)

6       on-disk = {on-disk, deleted}

7 

8   // Query Processing

9   foreach query

10       in_memory_graph = {abstract}

11       while not converge

12           Process(query, in_memory_graph)

13           load = Choose(on-disk)

14           in_memory_graph = {abstract, load}
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GridGraph – information propagation is limited per 

round (each edge processed once), so slower 

convergence

Wonderland – Abstraction is a “bridge”, and 

common abstractions are shared among iterations 

Only store abstracted graph in memory

Part of on-disk graph chosen to load into memory

New in-memory subgraph created

Compute on entire graph, or a round

Compute on a subgraph, or an iteration



1   // Abstraction Generation

2   abstraction = on-disk = {}

3   while not graph.empty()

4       abstraction = {abstract, graph.PopN(...)}

5       abstract, deleted = Select(abstract, X)

6       on-disk = {on-disk, deleted}

7 

8   // Query Processing

9   foreach query

10       in_memory_graph = {abstract}

11       while not converge

12           Process(query, in_memory_graph)

13           load = Choose(on-disk)

14           in_memory_graph = {abstract, load}
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1   // Abstraction Generation

2   abstraction = on-disk = {}

3   while not graph.empty()

4       abstraction = {abstract, graph.PopN(...)}

5       abstract, deleted = Select(abstract, X)

6       on-disk = {on-disk, deleted}

7 

8   // Query Processing

9   foreach query

10       in_memory_graph = {abstract}

11       while not converge

12           Process(query, in_memory_graph)

13           load = Choose(on-disk)

14           in_memory_graph = {abstract, load}
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How do we select edges for our 

abstraction that will be suitable for a 

variety of applications? 

1

How do we reduce the number of 

random disk accesses?

2

How do we implement the choose 

function that decides which part of the 

on-disk graph we load next? 

3

What is a user-friendly, intuitive way of 

programming the process function? 

4



SELECTING EDGES

What do users need to provide?

1

// Input
X = size of abstraction 
B = the number of edges loaded per iteration 
S = maximum size of each edge grid
W = width of grid 

1
2
3
4
5

In practice, setting B/X = 0.25 is a reasonable choice.

Picking X a bit harder– we’ll come back to this. 



SELECTING EDGES

What do users need to provide?

What level of abstraction do we 

give to the user?

1

// Input
X = size of abstraction 
B = the number of edges loaded per iteration 
S = maximum size of each edge grid
W = width of grid 

1
2
3
4
5

In practice, setting B/X = 0.25 is a reasonable choice.

Picking X a bit harder– we’ll come back to this. 

Define low-level and high-level APIs for selecting edges: 

• Select(vector<Edge>& abstract, size_t X)
• Arbitrary method to sort edges 

Low-level API

• Edge-priority selection: EdgePriority(Edge e) 
• Generate abstraction containing as few weakly 

connected components as possible with disjoint-set 
DS– first, join disconnected components, then add 
edges by priority

High-level API



REDUCING DISK 
ACCESSES

How do we store the graph in 

memory, noting that we process in 

grids? 

2

Reduce random edge accesses:

• Abstraction edges at header because used in tandem 

with all other grids

• Typically edges of abstraction are cached 

Reduce random vertex accesses:

• Initially, we have a vertex file anyway! 

• Possible that non-contiguous vertex IDs are 

accesses…

IDnew=0 ... IDnew=x ... IDnew=|V|-1

Abstract edge grid Grid 0 ... Grid y

Vertex File

Edge File

Other verticesAbstract vertices



REDUCING DISK 
ACCESSES

How do we store the graph in 

memory, noting that we process in 

grids? 

2

Reduce random edge accesses:

• Abstraction edges at header because used in tandem 

with all other grids

• Typically edges of abstraction are cached 

Reduce random vertex accesses:

• Initially, we have a vertex file anyway! 

• Possible that non-contiguous vertex IDs are 

accesses…

• Remap so abstract vertices are at header (but order 

preserved as much as possible) 

1 2 3 4
Abstract 

vertices: 

2, 42 4 1 3

IDnew=0 ... IDnew=x ... IDnew=|V|-1

Abstract edge grid Grid 0 ... Grid y

Vertex File

Edge File

Other verticesAbstract vertices



REDUCING DISK 
ACCESSES

How do we store the graph in 

memory, noting that we process in 

grids? 

2

How is the remapping done in practice?

• Keep in-memory vector with abstract vertices 

• Binary search on this. For a given vertex X, we 

know: 1) is it in the abstraction and 2) the number 

of vertices Y remaining in the abstract with smaller 

ID than X 

• If it remained, remap to Y

• If it was removed, remap to X –Y + (number of 

vertices that remained in abstract) 

1 2 3 4
Abstract 

vertices: 

2, 42 4 1 3

IDnew=0 ... IDnew=x ... IDnew=|V|-1

Abstract edge grid Grid 0 ... Grid y

Vertex File

Edge File

Other verticesAbstract vertices



REDUCING DISK 
ACCESSES

How do we store the graph in 

memory, noting that we process in 

grids? 

2

IDnew=0 ... IDnew=x ... IDnew=|V|-1

Abstract edge grid Grid 0 ... Grid y

Vertex File

Edge File

Other verticesAbstract vertices

How are edges stored?

• If a grid contains 𝑋 edges and is above the memory 

limit, partitioned into 𝑋/𝑆 edges (either randomly 

or by priority)

• Edges contiguously stored in CSR format (locating 

outgoing edges of a vertex in constant time) 

• Grids are always loaded as a whole 



REDUCING DISK 
ACCESSES

How do we store the graph in 

memory, noting that we process in 

grids? 

2

IDnew=0 ... IDnew=x ... IDnew=|V|-1

Abstract edge grid Grid 0 ... Grid y

Vertex File

Edge File

Other verticesAbstract vertices

How are edges stored?

• If a grid contains 𝑋 edges and is above the memory 

limit, partitioned into 𝑋/𝑆 edges (either randomly 

or by priority)

• Edges contiguously stored in CSR format (locating 

outgoing edges of a vertex in constant time) 

• Grids are always loaded as a whole 

How many passes through the edge list is required for 

grid partitioning?

Counting edges per grid (1)

Write edges to locations (1) 

Total: 2 passes



REDUCING DISK 
ACCESSES

How do we store the graph in 

memory, noting that we process in 

grids? 

2

IDnew=0 ... IDnew=x ... IDnew=|V|-1

Abstract edge grid Grid 0 ... Grid y

Vertex File

Edge File

Other verticesAbstract vertices

How are edges stored?

• If a grid contains 𝑋 edges and is above the memory 

limit, partitioned into 𝑋/𝑆 edges (either randomly 

or by priority)

• Edges contiguously stored in CSR format (locating 

outgoing edges of a vertex in constant time) 

• Grids are always loaded as a whole 

How many passes through the edge list is required for 

grid partitioning?

Counting edges per grid (1)

Write edges to locations (1) 

Total: 2 passes

Combine first pass with remapping procedure. 

Preprocessing total: 3 passes of edges (selecting 

abstraction, remapping, partitioning) 



CHOOSING EDGES  
FROM DISK 

How do we select what edges we 

load from disk to get our in-

memory graph? 

3

Problem: this is very application-specific, and we wanted 

to develop an application-agnostic framework.

First, enforce users can only choose grid partitions. 

Have users specify the order in which they evaluate 

grids to enforce a scheduling. 



EXECUTION OF 
QUERY  

How do we actually express an 

algorithm, or process, to run a 

query on the graph? 

4

Do-it-yourself
Low-

level API

• Define Process(Graph& g) function 

• Given a vector of loaded grids, including 
abstraction

“Think like a vertex”
High-

level API

• Define function to process on a per-vertex 
basis 

• Provide multi-threaded executor to parallelize

• Reuse execution engine already present in 
literature



EXECUTION OF 
QUERY  

How do we actually express an 

algorithm, or process, to run a 

query on the graph? 

4

Low-level API 

Process(Graph& g)

Given a list of grids (including abstraction, which is a 

special grid), user has access to:

• List of edges in the grid

• Smallest and largest ID of source vertices 

• Access to endpoints for each vertex



EXECUTION OF 
QUERY  

How do we actually express an 

algorithm, or process, to run a 

query on the graph? 

4

Low-level API 

Process(Graph& g)

Given a list of grids (including abstraction, which is a 

special grid), user has access to:

• List of edges in the grid

• Smallest and largest ID of source vertices 

• Access to endpoints for each vertex

High-level API

func VertexProgram(Graph& g, Index u)
// Iterating loaded edges
foreach grid in g.loaded_grids

foreach edge in [grid.StartEdge(u), 
grid.EndEdge(u)]

ProcessEdge(g.Vertex(u), edge, 
g.Vertex(edge.destination))

// Update priority of grids
foreach grid in g.all_grids

if u >= grid.EndVertex(): continue
if u < grid.StartVertex(): continue
UpdatePriority(g.Vertex(u), g.Priority(grid))



FINAL IMPLEMENTATION 
SKETCH

// Input
X = size of abstraction 
B = the number of edges loaded per iteration 
S = maximum size of each edge grid
W = width of grid 

// Generating Abstract
abstract = vector<Edge>()
on-disk = fstream(...)
while not graph.empty()
abstract = {abstract, graph.PopN(B)}
abstract, deleted = Select(abstract, X)

// Remapping and Partitioning
abstract, grids = Partition(abstract, on-disk)

// Processing Querys
foreach query
in_memory_graph = {abstract}
worklist = BootstrapWorklist(in_memory_graph, query)
while not converge

// Worklist-based processing
while not worklist.empty()

u = worklist.pop()
for e in in_memory_graph.loaded_edges(u)
ProcessEdge(u, e)
Append worklist accordingly

Update priority of grids accordingly
// Bootstrap next iteration
{grid1, grid2, ...} = Choose(grids, B)
in_memory_graph = {abstract, grid1, grid2, ...}
worklist = BootstrapWorklist(in_memory_graph, query)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
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CASE STUDY: SHORTEST-PATH

• Given a weighted graph with a source (src) and a destination (dst).

• Negative edge weights allowed, but no negative weight cycles.

• Attach a dist property to each vertex and run Dijkstra’s.

• Relaxation: dist[u] + w[u, v] < dist[v] 
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func VertexProgram(Graph& g, Index u)
float src_dist = g.Vertex(u).dist

// Iterating loaded edges
foreach grid in g.loaded_grids

foreach edge in [grid.StartEdge(u), grid.EndEdge(u))
float new_dist = src_dist + edge.weight
float& dst_dist = g.Vertex(edge.desination).dist
if new_dist < dst_dist

dst_dist = new_dist
g.Active(edge.destination)
Worklist.push(edge.destination)

// Update priority of grids
foreach i in [0, g.all_grids.size())

Grid& grid = g.all_grids[i]
if u >= grid.EndVertex(): continue
if u < grid.StartVertex(): continue
float new_priority = -(src_dist + min_expect[i, dst])
if grid.priority < new_priority

grid.priority = new_priority

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Perform relaxation if necessary

“Activate” edge destination
Push to worklist or process all loaded vertices once

First, we define the necessary 

steps for an edge relaxation…
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func VertexProgram(Graph& g, Index u)
float src_dist = g.Vertex(u).dist

// Iterating loaded edges
foreach grid in g.loaded_grids

foreach edge in [grid.StartEdge(u), grid.EndEdge(u))
float new_dist = src_dist + edge.weight
float& dst_dist = g.Vertex(edge.desination).dist
if new_dist < dst_dist

dst_dist = new_dist
g.Active(edge.destination)
Worklist.push(edge.destination)

// Update priority of grids
foreach i in [0, g.all_grids.size())

Grid& grid = g.all_grids[i]
if u >= grid.EndVertex(): continue
if u < grid.StartVertex(): continue
float new_priority = -(src_dist + min_expect[i, dst])
if grid.priority < new_priority

grid.priority = new_priority

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Then, we need to update the 

priority of the given grid.

Intuition: estimate lower-bound on 

distance. The smaller this is, the 

higher the priority.
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func VertexProgram(Graph& g, Index u)
float src_dist = g.Vertex(u).dist

// Iterating loaded edges
foreach grid in g.loaded_grids

foreach edge in [grid.StartEdge(u), grid.EndEdge(u))
float new_dist = src_dist + edge.weight
float& dst_dist = g.Vertex(edge.desination).dist
if new_dist < dst_dist

dst_dist = new_dist
g.Active(edge.destination)
Worklist.push(edge.destination)

// Update priority of grids
foreach i in [0, g.all_grids.size())

Grid& grid = g.all_grids[i]
if u >= grid.EndVertex(): continue
if u < grid.StartVertex(): continue
float new_priority = -(src_dist + min_expect[i, dst])
if grid.priority < new_priority

grid.priority = new_priority

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Then, we need to update the 

priority of the given grid.

Intuition: estimate lower-bound on 

distance. The smaller this is, the 

higher the priority.

Define min_expect[i, dst] for 

each grid and each dst to be the 

precalculated value of the lower 

bound of a path starting from an 

edge in each grid to dst. 
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func VertexProgram(Graph& g, Index u)
float src_dist = g.Vertex(u).dist

// Iterating loaded edges
foreach grid in g.loaded_grids

foreach edge in [grid.StartEdge(u), grid.EndEdge(u))
float new_dist = src_dist + edge.weight
float& dst_dist = g.Vertex(edge.desination).dist
if new_dist < dst_dist

dst_dist = new_dist
g.Active(edge.destination)
Worklist.push(edge.destination)

// Update priority of grids
foreach i in [0, g.all_grids.size())

Grid& grid = g.all_grids[i]
if u >= grid.EndVertex(): continue
if u < grid.StartVertex(): continue
float new_priority = -(src_dist + min_expect[i, dst])
if grid.priority < new_priority

grid.priority = new_priority

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Grid i

u
Current priority: p
But, if:
Vertex(u).dist + min_expect[i, dst] < p 

Update priority with its negation

src

Then, we need to update the 

priority of the given grid.

Intuition: estimate lower-bound on 

distance. The smaller this is, the 

higher the priority.

Define min_expect[i, dst] for 

each grid and each dst to be the 

precalculated value of the lower 

bound of a path starting from an 

edge in each grid to dst. 

dst
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func VertexProgram(Graph& g, Index u)
float src_dist = g.Vertex(u).dist

// Iterating loaded edges
foreach grid in g.loaded_grids

foreach edge in [grid.StartEdge(u), grid.EndEdge(u))
float new_dist = src_dist + edge.weight
float& dst_dist = g.Vertex(edge.desination).dist
if new_dist < dst_dist

dst_dist = new_dist
g.Active(edge.destination)
Worklist.push(edge.destination)

// Update priority of grids
foreach i in [0, g.all_grids.size())

Grid& grid = g.all_grids[i]
if u >= grid.EndVertex(): continue
if u < grid.StartVertex(): continue
float new_priority = -(src_dist + min_expect[i, dst])
if grid.priority < new_priority

grid.priority = new_priority

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Then, we need to update the 

priority of the given grid.

Intuition: estimate lower-bound on 

distance. The smaller this is, the 

higher the priority.

Define min_expect[i, dst] for 

each grid and each dst to be the 

precalculated value of the lower 

bound of a path starting from an 

edge in each grid to dst. 

Computing this could be hard, so 

instead, we let each grid keep one 

min_expect, which is the minimum 

edge weight in the grid. 



SHORTEST-PATH OPTIMIZATIONS

Graph 
abstraction

Edge priority is negative of its weight

Lightest X edges always in abstraction

Upper-
bound

Processing a sequence of SP queries (not SSSP) 

Can use current dist priorty of dst vertex as upper-bound of relaxation 

Selecting 
Loading

If all edges in grid are not activated, skip over 
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EVALUATION ENVIRONMENT

• Two 8-core Intel Xeon CPUs 

• Set memory limits per query 

• Compare against GridGraph and Galois, as well as out-of-core Galois (named 

LigraChi-g)

• Average results from 30 query pairs 

• Reported results on LiveJournal (790 MB) and Twitter (17 GB) graphs
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SHORTEST-PATH 
PERFORMANCE: BENCHMARKS

For high memory limits, devolves into fully in-

memory setting, and Galois and Wonderland 

outperform GridGraph significantly.

For out-of-core system, Wonderland 

outperforms GridGraph because of 

abstraction (always keep certain things in 

memory). 
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SHORTEST PATH CASE STUDY
PIECEWISE BREAKDOWN

Three sources of speedup:

1. Bootstrapping an initial result 

2. Abstraction-enabled information propagation

3. Abstraction-guided priority scheduling

If only (1), speedups are limited as memory limit goes down

Adding (2), extra speedup across the board 

Adding (3), extra speedup across the board

But, (1) most important if memory limit is relatively high
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SHORTEST PATH CASE STUDY
ABSTRACTION SIZE SENSITIVITY
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SHORTEST PATH CASE STUDY
MULTI-THREAD SPEEDUP

47



SHORTEST PATH CASE STUDY
SELECTIVITY SENSITIVITY

We define the selectivity of the query to denote how much of the graph 

structure the query necessitates (# total paths)/(# paths we check):

• Any path queries: reachability,  weakly-connected components (WCC)

• All path queries: shortest path (can be pruned from an exhaustive search, so 

high-selectivity), widest path (maximize weight of min-weight edge)
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SHORTEST PATH CASE STUDY
SELECTIVITY SENSITIVITY

We define the selectivity of the query to denote how much of the graph 

structure the query necessitates:

• Any path queries: reachability,  weakly-connected components (WCC)

• All path queries: shortest path (can be pruned from an exhaustive search, but 

high-selectivity), widest path (maximize weight of min-weight edge)
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PREPROCESSING TIME

50

Even for one query,  Wonderland is faster than GridGraph. 



SCOPE OF APPLICATION

• Higher speedup if problem has a higher selectivity (BFS, MST)

• Basic graph operations; could be extended to clustering, matching, flow, etc.

• Wonderland can also be faster in computing sparse matrix-vector 

multiplication algos like PageRank, but due to Galois engine, not abstraction 
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CONCLUSION

• Wonderland: novel, out-of-core graph processing framework

• Extract effective abstractions from original graph

• Use this to enable effective information propagation

• Use this to enable priority scheduling for faster convergence

• Drastic speedup over other state-of-the-art systems
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DISCUSSION

• More information on tuning parameters during benchmarking

• Useful to see piecewise breakdown, but unclear how bootstrapping of initial 

result happens

• Theoretical work into deriving bounds on the best X

• Paper laid out well but should have done a more thorough review of 

literature– many of the concepts (besides abstraction) are not novel to this 

paper in particular
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