A New Parallel Algorithm for
* Connected Components in

Dynamic Graphs

Tim Kralj

Connected Components

Motivation
STINGER

Data Structure

Outline

Parent-Neighbor Relationship

Initialization

Results

Discussion

Connected Component

e Subgraph of original graph
i:I * All vertices connected
e Usually calculated with BFS or DFS

* All vertices connected with paths

By David Eppstein - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=2838835

* Betweenness centrality

USGS Of e Community detection
Connected | - image processing
CO mpone ntS e Largely used in social networks

STINGER

Edge |

ID| inthis

in this

Edge3

PPPPPPP

Data structure for dynamic graph problems

Adjacency lists
e Fast updates

CSR
* Low storage component

Fast insertions
Good locality
Parallelism

Streaming Graphs

* Dynamic Graph
* Constantly updating
e Steam of updates

- * Analysis of continuously changing state
Dynamic vs e Y Enaneme
. Static
Stat|c e Snapshot of dynamic graph

* Analysis of a state
 How most algorithms taught (006 etc)

Parent-Neighbor Relationship

 Memory Requirement of O(V)

Directed subgraph

Each vertex has list of vertices above “parents”

List of vertices at same level “neighbors”

Limit number of parents and neighbors with
threshold

* Helps maintain O(V) instead of O(V + E)

Data Structure

e Maintained in real time

* Initialization step

Name Description Type Size (Elements)

C Component labels array o(V)

Size Component sizes array Oo(V)

Level Approximate distance from the root array Oo(V)

PN Parents and neighbors of each vertex array of arrays O(V -threshpyn) = O(V)
Count Counts of parents and neighbors array O(V)

threshpn Maximum count of parents and neighbors for a given vertex value O(1)

Er Batch of edges to be inserted into graph array O(batch size)

Er Batch of edges to be deleted from graph array O(batch size)

Initialization

Uses Parallel BFS

Start with
* Level at INF
* Counter=0
* Componentsize=0

* Dequeue vertex and add parents and neighbor relationships
* Only add neighbors if below Threshold
* All parents will be found before neighbors added

Atomic compare-and-swap, fetch-and-add

* Insertions-simple

Updates

e Deletions-harder

Insertions

* 2 options:
e Edge within a connected component
* Edge joins two components

e Levels of s and d checked

e Update Data structure

Deletions

* Need to check parents of deleted edge

e Search for remaining parent

* |f remains, connection to the root of
component must exist-safe

* If no parents, check for neighbors if levels > 0
(meaning path to the root)

* |f neither is true, deletion was not safe

 Need to check from both s and d of <s,d> deletion

2500

Results -
* Varying threshold variable l I_ - v

e Used for number of

pa rents/ neigh bors maintianed Figure 2. Average number of unsafe deletes in PN data structure for

batches of 100K updates as a function of the average degree (x-axis) and
threshppn (bars).

20000 20000 20000 20000
18000 18000 18000 18000
16000 16000 16000 16000 -
14000 14000 14000 14000
12000 12000 12000 12000 ~
10000 10000 10000 - 10000
8000 8000 8000 - 8000
6000 6000 -~ 6000 - 6000
4000 4000 4000 - 4000 ~
2000 - 2000 - 2000 - 2000 -

0 -+ 0 -+ 0 0 A

8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64
(a) threshpny = 4 (b) threshpy = 6 (¢c) threshpy =8 (d) threshpy = 12

M Deleted neighbors M Deleted parents I Inserted neighbors M Inserted parents M Insert replacement

Figure 1. Average number of inserts and deletes in PN array for batches of 100K updates for RMAT-22 graphs. The subfigures are for different values
of threshpn. Note that the ordinate is dependent on the specific bar chart. The charts for RMAT-21 graphs had very similar structure and have been
removed for the sake of brevity.

Results

16
8 [}
2 N
? 4 ’ .
2 2]
(7] [] *
2 z &
L
A *
1m ¢ A
1 2 4 8 16
Threads
¢8 W16 A32

Figure 4. Speed up of the new algorithm over performing parallel static
recomputation after each batch on three different RMAT-22 graphs with

32

He®® B

64

each average degree as a function of the number of threads.

256

128
64
3
8 16 32

Edge Factor

N

Speedup
=
[e)]

N 0

[y

Figure 6. Speed up over performing static recomputation after each batch
on scale 24 graphs for three graphs at each edge factor using 64 threads.

* Mentions of increasing core counts but none of
distributed systems, would this be feasible and
improve performance?

* Use BFS in the initial stage and during steaming,

Discussion be better if switched to a faster algorithm

uestions/Commentar
Q / entary * Largest graph had 2%* vertices (16 million) but

social graphs much larger

* First parallel computing of connected
components with processor oblivious runtime

