Work-efficient parallel union-find

Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirthapura, Kun-Lung Wu

Presenter: Jessica Shi

6.886 Algorithm Engineering Spring 2019, MIT

Introduction

Union-find

Union-find: Maintain a collection of disjoint sets supporting:

- \bullet union(u, v): Combine sets containing u and v
- find(v): Return set containing v
	- If u and v are in the same set, find(u) = find(v)

Goal: Incremental graph connectivity

• Incremental graph connectivity: Graph connectivity as edges are added over time

$$
\mathsf{find}(0) = 1 \Longrightarrow \mathsf{union}(0,3) \Longrightarrow \mathsf{find}(0) = 4
$$

Goal: Parallelization

Shared-memory parallelization:

- Communication overhead in distributed setting
- Multicore machines can store large graphs
- Work-efficiency:
	- Guarantee worst-case performance

Previous work

- \bullet McColl et al. $^{[1]}$: Parallel alg for fully dynamic connectivity
	- No theoretical bound
- Manne and Patwary $[2]$: Parallel union-find alg for distributed setting
- Patwary et al. $[3]$: Shared-memory parallel union-find algement
	- No theoretical bound
- \bullet Shun et al. $[4]$ and Gazit $[5]$: Work-efficient parallel alg for connectivity
	- Only for static graphs
- [1] McColl, Green, and Bader. 2013.
- ^[2] Manne and Patwary. 2010.
- [3] Patwary, Refsnes, and Manne. 2012.
- [4] Shun, Dhulipala, and Blelloch. 2014.
- $[5]$ Gazit. 1991.

Main results: Union-find

Simple parallel algorithm

- b union/find: $\mathrm{O}(b\log n)$ work, $\mathrm{O}(\mathsf{polylog}(n))$ depth
- $O(n)$ memory

Work-efficient parallel algorithm

- *m* union, *q* find: $O((m+q)\alpha(m+q, n))$ total work, $O(polylog(m, n))$ depth
- \bullet α = inverse Ackermann's function
- $O(n)$ memory

• Implementation of simple parallel algorithm

Preliminaries

Preliminaries

- **.** Discretized stream input: Sequence of minibatches
	- Each minibatch consists of either union queries or find queries
- Parallel subroutines:
	- Filter, prefix sum, map, pack: $O(n)$ work, $O(log^2 n)$ depth
	- Duplicate removal: $O(n)$ work, $O(log(2n))$ depth
	- Integer sort: $a_i \in [0, \mathrm{O}(1) \cdot n]$: $\mathrm{O}(n)$ work, $\mathrm{O}(\mathsf{polylog}(n))$ depth
	- Connectivity (static) $[6]$: $O(|V| + |E|)$ work, $O(polylog(|V|, |E|))$ depth

^[6] Shun, Dhulipala, and Blelloch. 2014.

Union by size

- Always link tree with fewer vertices to tree with more vertices
	- Tree height $O(log n)$
	- Each union/find $O(log n)$

Simple parallel algorithm

Parallel find: Perform finds in parallel

- Read-only $=$ no conflicts
- Work: $O(b \log n)$
- Depth: $O(polylog n)$

• Safe to run multiple unions in parallel if they belong to different trees • Worst case: Star minibatch: $(0, 1), (0, 2), (0, 3), \ldots, (0, 7)$

- Main idea: Doesn't matter how we connect $\{0, \ldots, 7\}$
- 3 parallel rounds:

 $(0, 1), (2, 3), (4, 5), (6, 7) \implies (0, 2), (4, 6) \implies (0, 4)$ $(2) (4) (6)$ 1) (3) (5) (7 =⇒ 0 $(1) (2)$ 3 4 $\overrightarrow{5}$ $\overrightarrow{6}$ 7 =⇒ 0 $\begin{pmatrix} 1 \end{pmatrix}$ 5) (6 7 3

- **Parallel join:** Recursively join tree roots, so that they are all connected at the end
	- $u \leftarrow$ parallel join on first half of roots
	- $v \leftarrow$ parallel join on second half of roots
	- Return union(u, v)
- Parallel union:
	- Relabel each (u, v) with the roots of u and v
	- Remove self-loops
	- Compute the connected components among our edge pairs
	- For each connected component (in parallel):
		- Parallel join the roots

- Parallel join:
	- Work: $W(k) = 2W(k/2) + O(1) \Rightarrow O(k)$
	- Depth: $D(k) = D(k/2) + O(1) \Rightarrow D(k) = O(\log k)$
- **Parallel union:** b unions:
	- Work: $O(b \log n)$
	- Depth: $O(log max(b, n))$

Preliminaries 2.0

Path compression

 \bullet find(8)

Path compression & union by size: Amortized $\mathrm{O}(\alpha(n))$ union/find

Work-efficient algorithm

Work-efficient algorithm: Path compression

- **Parallel union:** Same as in the simple parallel algorithm
- Parallel find:
	- Find roots for all queries
		- BFS: When flows meet up, only one moves on (use remove duplicates)
	- Distribute roots back along BFS path for path compression
		- **•** Response distributor

Response distributor

- Save all (from, to) pairs on BFS (\mathbb{F} = set of all from values)
- \bullet Must construct function that finds all pairs from f
- Response distributor:
	- Hash all from values to range $[3 \cdot |\mathbb{F}|]$
	- Integer sort ordered pairs by hashed from value
	- Create array A of length $3 \cdot |\mathbb{F}| + 1$ s.t. *i*th entry marks beginning of pairs where hashed from value is i
	- Work: $O(|F|)$, Depth: $O(polylog(|F|))$
- Distributor function:
	- \bullet Hash f and use A to find all pairs from f
	- Work: $O(|\mathbb{F}|)$, Depth: $O(log |\mathbb{F}|)$

Work-efficient algorithm: Path compression

Parallel find:

- Work: Given by number of nodes encountered in BFS
- Depth: $O(polylog(n))$
- Note: There exists an ordering of find queries s.t. serial find produces the same forest as parallel find, and traversal cost is equal
- ∴ work-efficient!

Implementation

Implementation

Simple parallel algorithm:

- Simple path compression: After union minibatch, traverse tree one more time to distribute roots
- Note: Does not give all benefits of path compression, esp within minibatch
- Connected components: Use alg by Blelloch et al. $[7]$ (worse theoretical bounds, good real-world perf)

 $^{[7]}$ Blelloch et al. 2012.

Evaluation

- Amazon EC2 instance, 20 cores (40 hyperthreaded)
- Parallel overhead: $1.01x 2.5x$ compared to seq w/o path compression
- Speedup: 4.6x with $b = 500K$, 9.4x with $b = 20M$

Figure: Average throughput (edges per second) of batch union over number of threads, of local16 (left) and rMat16 (right)

Conclusion

Conclusion

- Simple parallel algorithm
- Work-efficient parallel algorithm
- Implementation of simple parallel algorithm
- Future work:
	- Implementation of work-efficient parallel algorithm
	- Switch algorithms depending on batch size:
		- Linear work in $#$ of edges given large union batch (e.g., DFS if all edges given in one batch – our alg is superlinear)
		- Fall back to union-find algorithm for smaller minibatch

Thank you!