Work-efficient parallel union-find

Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirthapura, Kun-Lung Wu

Presenter: Jessica Shi

6.886 Algorithm Engineering Spring 2019, MIT

Introduction

Union-find

• Union-find: Maintain a collection of disjoint sets supporting:

- union(u, v): Combine sets containing u and v
- find(v): Return set containing v
 - If u and v are in the same set, find(u) = find(v)

Goal: Incremental graph connectivity

 Incremental graph connectivity: Graph connectivity as edges are added over time

$$find(0) = 1 \Longrightarrow union(0,3) \Longrightarrow find(0) = 4$$

Goal: Parallelization

• Shared-memory parallelization:

- Communication overhead in distributed setting
- Multicore machines can store large graphs
- Work-efficiency:
 - Guarantee worst-case performance

Previous work

- McColl et al. ^[1]: Parallel alg for fully dynamic connectivity
 - No theoretical bound
- Manne and Patwary ^[2]: Parallel union-find alg for distributed setting
- Patwary et al. [3]: Shared-memory parallel union-find alg
 - No theoretical bound
- Shun et al. ^[4] and Gazit ^[5]: Work-efficient parallel alg for connectivity
 - Only for static graphs
- ^[1] McColl, Green, and Bader. 2013.
- ^[2] Manne and Patwary. 2010.
- ^[3] Patwary, Refsnes, and Manne. 2012.
- ^[4] Shun, Dhulipala, and Blelloch. 2014.
- ^[5] Gazit. 1991.

Main results: Union-find

• Simple parallel algorithm

- *b* union/find: $O(b \log n)$ work, O(polylog(n)) depth
- O(n) memory

• Work-efficient parallel algorithm

- *m* union, *q* find: $O((m + q)\alpha(m + q, n))$ total work, O(polylog(m, n)) depth
- $\alpha = inverse$ Ackermann's function
- O(n) memory

• Implementation of simple parallel algorithm

Preliminaries

Preliminaries

- Discretized stream input: Sequence of minibatches
 - Each minibatch consists of either union queries or find queries
- Parallel subroutines:
 - Filter, prefix sum, map, pack: O(n) work, $O(\log^2 n)$ depth
 - Duplicate removal: O(n) work, O(log(2n)) depth
 - Integer sort: $a_i \in [0, O(1) \cdot n]$: O(n) work, O(polylog(n)) depth
 - Connectivity (static) ^[6]: O(|V| + |E|) work, O(polylog(|V|, |E|)) depth

^[6] Shun, Dhulipala, and Blelloch. 2014.

Union by size

- Always link tree with fewer vertices to tree with more vertices
 - Tree height $O(\log n)$
 - Each union/find O(log n)

Simple parallel algorithm

• Parallel find: Perform finds in parallel

- Read-only = no conflicts
- Work: $O(b \log n)$
- Depth: O(polylog*n*)

Safe to run multiple unions in parallel if they belong to different trees
Worst case: Star minibatch: (0,1), (0,2), (0,3), ..., (0,7)

- Main idea: Doesn't matter how we connect $\{0, \ldots, 7\}$
- 3 parallel rounds:

 $(0,1), (2,3), (4,5), (6,7) \implies (0,2), (4,6) \implies (0,4)$ $\stackrel{0}{\xrightarrow{0}} (2,4) \stackrel{6}{\xrightarrow{1}} (0,2), (4,6) \implies (0,4)$ $\stackrel{0}{\xrightarrow{1}} (1,2) \stackrel{6}{\xrightarrow{1}} (1,2) \stackrel{6$

- **Parallel join**: Recursively join tree roots, so that they are all connected at the end
 - $u \leftarrow$ parallel join on first half of roots
 - $v \leftarrow$ parallel join on second half of roots
 - Return union(u, v)
- Parallel union:
 - Relabel each (u, v) with the roots of u and v
 - Remove self-loops
 - Compute the connected components among our edge pairs
 - For each connected component (in parallel):
 - Parallel join the roots

- Parallel join:
 - Work: $W(k) = 2W(k/2) + O(1) \Rightarrow O(k)$
 - Depth: $D(k) = D(k/2) + O(1) \Rightarrow D(k) = O(\log k)$
- Parallel union: b unions:
 - Work: $O(b \log n)$
 - Depth: O(log max(b, n))

Preliminaries 2.0

Path compression

• find(8)

• Path compression & union by size: Amortized $O(\alpha(n))$ union/find

Work-efficient algorithm

Work-efficient algorithm: Path compression

- Parallel union: Same as in the simple parallel algorithm
- Parallel find:
 - Find roots for all queries
 - BFS: When flows meet up, only one moves on (use remove duplicates)
 - Distribute roots back along BFS path for path compression
 - Response distributor

Response distributor

- Save all (from, to) pairs on BFS ($\mathbb{F} =$ set of all from values)
- Must construct function that finds all pairs from f
- Response distributor:
 - Hash all from values to range $[3 \cdot |\mathbb{F}|]$
 - Integer sort ordered pairs by hashed from value
 - Create array A of length $3 \cdot |\mathbb{F}| + 1$ s.t. i^{th} entry marks beginning of pairs where hashed from value is i
 - Work: $O(|\mathbb{F}|)$, Depth: $O(polylog(|\mathbb{F}|))$
- Distributor function:
 - Hash f and use A to find all pairs from f
 - Work: $O(|\mathbb{F}|)$, Depth: $O(\log |\mathbb{F}|)$

Work-efficient algorithm: Path compression

• Parallel find:

- Work: Given by number of nodes encountered in BFS
- Depth: O(polylog(n))
- Note: There exists an ordering of find queries s.t. serial find produces the same forest as parallel find, and traversal cost is equal
- : work-efficient!

Implementation

Implementation

• Simple parallel algorithm:

- Simple path compression: After union minibatch, traverse tree one more time to distribute roots
- Note: Does not give all benefits of path compression, esp within minibatch
- Connected components: Use alg by Blelloch *et al.* ^[7] (worse theoretical bounds, good real-world perf)

Evaluation

- Amazon EC2 instance, 20 cores (40 hyperthreaded)
- Parallel overhead: 1.01x 2.5x compared to seq w/o path compression
- Speedup: 4.6x with b = 500 K, 9.4x with b = 20 M

Figure: Average throughput (edges per second) of batch union over number of threads, of local16 (left) and rMat16 (right)

Conclusion

Conclusion

- Simple parallel algorithm
- Work-efficient parallel algorithm
- Implementation of simple parallel algorithm
- Future work:
 - Implementation of work-efficient parallel algorithm
 - Switch algorithms depending on batch size:
 - Linear work in # of edges given large union batch (e.g., DFS if all edges given in one batch – our alg is superlinear)
 - Fall back to union-find algorithm for smaller minibatch

Thank you!