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Introduction

Union-find

Union-find: Maintain a collection of disjoint sets supporting:

union(u, v): Combine sets containing u and v

find(v): Return set containing v

If u and v are in the same set, find(u) = find(v)

4

8 93

6

2 50

1 7

Jessica Shi Work-efficient parallel union-find 2 / 27



Introduction

Goal: Incremental graph connectivity

Incremental graph connectivity: Graph connectivity as edges are
added over time

find(0) = 1 =⇒ union(0, 3) =⇒ find(0) = 4
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Introduction

Goal: Parallelization

Shared-memory parallelization:

Communication overhead in distributed setting

Multicore machines can store large graphs

Work-efficiency:

Guarantee worst-case performance
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Introduction

Previous work

McColl et al. [1]: Parallel alg for fully dynamic connectivity

No theoretical bound

Manne and Patwary [2]: Parallel union-find alg for distributed setting

Patwary et al. [3]: Shared-memory parallel union-find alg

No theoretical bound

Shun et al. [4] and Gazit [5]: Work-efficient parallel alg for
connectivity

Only for static graphs

[1] McColl, Green, and Bader. 2013.
[2] Manne and Patwary. 2010.
[3] Patwary, Refsnes, and Manne. 2012.
[4] Shun, Dhulipala, and Blelloch. 2014.
[5] Gazit. 1991.
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Introduction

Main results: Union-find

Simple parallel algorithm

b union/find: O
(
b log n

)
work, O

(
polylog(n)

)
depth

O
(
n
)

memory

Work-efficient parallel algorithm

m union, q find: O
(
(m + q)α(m + q, n)

)
total work,

O
(
polylog(m, n)

)
depth

α = inverse Ackermann’s function

O
(
n
)

memory

Implementation of simple parallel algorithm
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Preliminaries

Preliminaries

Discretized stream input: Sequence of minibatches

Each minibatch consists of either union queries or find queries

Parallel subroutines:

Filter, prefix sum, map, pack: O
(
n
)

work, O
(
log2 n

)
depth

Duplicate removal: O
(
n
)

work, O
(
log(2n)

)
depth

Integer sort: ai ∈ [0,O
(
1
)
· n]: O

(
n
)

work, O
(
polylog(n)

)
depth

Connectivity (static) [6]: O
(
|V |+ |E |

)
work, O

(
polylog(|V |, |E |)

)
depth

[6] Shun, Dhulipala, and Blelloch. 2014.
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Preliminaries

Union by size

Always link tree with fewer vertices to tree with more vertices

Tree height O
(
log n

)
Each union/find O

(
log n

)
size 4 size 6 =⇒ size 10
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Simple parallel algorithm

Simple parallel algorithm
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Simple parallel algorithm

Simple parallel algorithm: Find

Parallel find: Perform finds in parallel

Read-only = no conflicts

Work: O
(
b log n

)
Depth: O

(
polylogn

)
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Simple parallel algorithm

Simple parallel algorithm: Union

Safe to run multiple unions in parallel if they belong to different trees

Worst case: Star minibatch: (0, 1), (0, 2), (0, 3), . . . , (0, 7)

0 1 2 3
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0
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Simple parallel algorithm

Simple parallel algorithm: Union

Main idea: Doesn’t matter how we connect {0, . . . , 7}
3 parallel rounds:

(0, 1), (2, 3), (4, 5), (6, 7) =⇒ (0, 2), (4, 6) =⇒ (0, 4)
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Simple parallel algorithm

Simple parallel algorithm: Union

Parallel join: Recursively join tree roots, so that they are all
connected at the end

u ← parallel join on first half of roots

v ← parallel join on second half of roots

Return union(u, v)

Parallel union:

Relabel each (u, v) with the roots of u and v

Remove self-loops

Compute the connected components among our edge pairs

For each connected component (in parallel):

Parallel join the roots
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Simple parallel algorithm

Simple parallel algorithm: Union

Parallel join:

Work: W (k) = 2W (k/2) + O
(
1
)
⇒ O

(
k
)

Depth: D(k) = D(k/2) + O
(
1
)
⇒ D(k) = O

(
log k

)
Parallel union: b unions:

Work: O
(
b log n

)
Depth: O

(
log max(b, n)

)
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Preliminaries 2.0

Path compression

find(8)

6

1214
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1 3 10

117

4

9
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=⇒

6
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10 117

4 9 8

Path compression & union by size: Amortized O
(
α(n)

)
union/find
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Work-efficient algorithm

Work-efficient algorithm: Path compression

Parallel union: Same as in the simple parallel algorithm

Parallel find:

Find roots for all queries

BFS: When flows meet up, only one moves on (use remove
duplicates)

Distribute roots back along BFS path for path compression

Response distributor
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Work-efficient algorithm

Response distributor

Save all (from, to) pairs on BFS (F = set of all from values)

Must construct function that finds all pairs from f

Response distributor:

Hash all from values to range [3 · |F|]
Integer sort ordered pairs by hashed from value

Create array A of length 3 · |F|+ 1 s.t. i th entry marks beginning
of pairs where hashed from value is i

Work: O
(
|F|

)
, Depth: O

(
polylog(|F|)

)
Distributor function:

Hash f and use A to find all pairs from f

Work: O
(
|F|

)
, Depth: O

(
log |F|

)
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Work-efficient algorithm

Work-efficient algorithm: Path compression

Parallel find:

Work: Given by number of nodes encountered in BFS

Depth: O
(
polylog(n)

)
Note: There exists an ordering of find queries s.t. serial find produces
the same forest as parallel find, and traversal cost is equal

∴ work-efficient!
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Implementation
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Implementation

Implementation

Simple parallel algorithm:

Simple path compression: After union minibatch, traverse tree
one more time to distribute roots

Note: Does not give all benefits of path compression, esp within
minibatch

Connected components: Use alg by Blelloch et al. [7] (worse
theoretical bounds, good real-world perf)

[7] Blelloch et al. 2012.
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Implementation

Evaluation

Amazon EC2 instance, 20 cores (40 hyperthreaded)

Parallel overhead: 1.01x – 2.5x compared to seq w/o path
compression

Speedup: 4.6x with b =500K, 9.4x with b =20M

Figure: Average throughput (edges per second) of batch union over number of threads, of
local16 (left) and rMat16 (right)
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Conclusion

Conclusion

Simple parallel algorithm

Work-efficient parallel algorithm

Implementation of simple parallel algorithm

Future work:

Implementation of work-efficient parallel algorithm

Switch algorithms depending on batch size:

Linear work in # of edges given large union batch (e.g.,
DFS if all edges given in one batch – our alg is superlinear)

Fall back to union-find algorithm for smaller minibatch
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Conclusion

Thank you!
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