Exact and Parallel Triangle
Counting in Dynamic Graphs

Devavret Makkar, David A. Bader, Oded Green

Jeremy Bogle

Qutline

Background

- Triangle Counting
- Dynamic Graphs

Implementation

- Graph updating
- Triangle updating

Evaluation
- Batchsize
- Breakdown

- Speedup

Discussion or Questions

N\

Triangle Counting

Background

Triangle Counting

Applications

3 X number of triangles in the network

r=— —
- Finding transitivity number of connected triples of nodes in the network

- Spam detection in email networks

- Finding tightly knit communities

- Finding trusses k-trusses

- Evaluating the quality of different community detection algorithms

Background

Triangle Counting

Current Approaches

- Enumerating over all node triplets O(V?3)
- Using linear algebra operations
- Adjacency list intersection (using hash tables)

Dynamic Graphs

Background
Dynamic Graphs

Useful for larger graphs with evolving datasets
Needs two things

1) Dynamic data structure
2) Algorithm to update the metric of interest

Should be computationally inexpensive compared to restarting the computation from scratch

Should produce the same result as the static graph algorithm

Background
Dynamic Graphs

Existing dynamic graph frameworks

STINGER (DISTINGER for distributed
systems and cuSTINGER for GPUs)

AIMS

GraphIN

Why Stinger?
More flexible than CSR
Supports update operations
Better locality than a linked list

Lower storage bound

N\

Dynamic Graph Updating

Dynamic Graph Updating

Bunch multiple changes to a graph into ‘batches’
Given a batch update, create an update-graph (G’)
Represent the update-graph as a CSR and sort that update-graph

Assuming the original graph was and still is already sorted, merge G’ and G

Dynamic Graph Updating

Insertion

: procedure INSERTION
parallel for v € V do
i dS
jdS’
while : > 0 A 7 > 0 do
diff + adj(u, G)[i] — adj(u, G')[J]
if diff > O then
adj(u, G)[i + j + 1] « adj(u, G')[4]
i i—1
else

> degree of uw in G
> degree of u in G’

> Copy from original.

> Copy from batch graph.
r adj(u, G)[i + j + 1] + adj(u, G")[4]
used alloc : ji3—1
a . : J : d .f
Before insertion After insertion ende:hil]e
while 7 > 0 do
adj(u, G)[i + j + 1] + adj(u, G')[4]
J & 3—1
end while
19: end procedure

Dynamic Graph Updating

Deletion

procedure DELETION
parallel for v € V do

i+ dg

jdS’

while ¢ > 0A 7 > 0 do
diff < adj(u, G)[i] — adj(u, G")[3]
if diff = O then adj(u, G)[i] + NULL
end if
if diff > O then i «+ 7 — 1
end if

if diff < Othen j «+ j—1
end if

end while
140
7«0
while 7 < d,, do > Stream compaction
Before deletion After deletion if adj(u, G)[i] # NULL then
adj(u, G)[i] « adj(u, Q)[4); j ¢ j + 1
end if
14— 1+1
end while
dy +— J
end procedure

N\

Triangle Count Updating

Triangle Counting

Types of Triangles

- A‘1 (triangles with 1 new edge and 2 old edges)
- A‘2 (triangles with 2 new edges and 1 old edge)
- A‘3 (triangles with 3 new edges)

NewTriangles = |A'" | +|A" | +|A'|

Triangle Counting Break up discovery by num new

edges

For each edge <u,v> in the batch
update, intersect the adjacency lists

Se1 = adj(u, (/;'\1) Nadj(v, (/;\1)

S1=2-|A7|+4-]A3]+6-|Aj|

Sy =) Ise2l =2 A5 +6-|A]]

ecE’

Triangle Counting

After gathering and discover 1+, 2+ and 3+ new-edged triangles

Use Inclusion - Exclusion formula to compute total new triangles

S.
AL+ 185 +185] = 3 (51 - 55+ 5)

Triangle Counting

Deleting edges is simpler 5¢=2.]A9

Look for edges that existed r 2
before their removal Sy =2-|Aj]

Triangles do not get recounted gd—9. |Ad|
8= 3

And from (10) + (11) + (12) we get

1
ATl + [A2] + [Ag] = 5 (ST + S5 + 55)

Triangle Counting

Evaluation

Evaluation
Networks Used

Name Network V| |E| | Ref. Static Insertion (sec) Deletion (sec)
Type (sec.) 100k IM 10M 100k IM 10M

“coPaperDBLP | Social | 540k | 30M | (3] | 1032 | 0053 | 0452 | - [0025 [0098 | -
02006 | Webcrawl | 138M | 27M | (3] | 18176 | 0213 | 2208 | - [0017 | 1805 | -
com-Livelournal | Social | M| 69M | [35] | 8975 | 0168 | 0765 | - [0067 | 0091 | -
. - [o0053 [0l [-

156 | 0332 |

3
0332
“roadcentral | Road | 14M | 33M | [3] | 1348 | 0288 | 0348 | - [0029 [0057 | -

2016 0732
(roaduss | Road | 24M | S8M | [3] | 2188 | 0480 | 0550 | - | 0046 | 0074 | - |

Evaluation
Batch Size

second)

S
$
S
~

)
S
S
S
S

Batch Size Batch Size
@0 uk-2002 A4 coPapersDBLP > > road_central uk-2002 &-A coPapersDBLP > > road_central
V-V com-orkut 44 nlpkkt200 © 0 cagel5 V-V com-orkut % < nlpkkt200 o0 cagel5

a) Insertions (b) Deletions

Evaluation
Breakdown

%
=

Total update time (sec)

Percentage of execution time

5
(]
R

C

Insertion mmm G' creation Execution mmm Deletion B G' creation Execution

(a) Insertions (b) Deletions

Fig. 4. This figure depicts the execution breakdown (in percentage) for the three stages in the execution: 1) creating the update graph G’ from the batch
update, 2) inserting (or deleting) the batches into the graph (modification of cuSTINGER), and 3) running the dynamic graph triangle counting.

Count S¢

(b) Deletions

mmm Count Sf

Count Sj

(a) Insertions

Evaluation
Breakdown

-
aWi} uolINJaxa Jo abejuadiad

=
b=
=
S <
g
B
cmn
n.l
.mm
mb
B2
r e
mu
2 A
228
Ct
8y
Q
S 5
05
.mm
= Q
Ca
2 o
2 =
S g
5z
o0 5
g

£ o
5 &
2 g
C.n
ht
an O
g5
E%
L o
mm
g
S
d.m
LB
s 3
> %
.m.e
S w
Yy

5 &
D @
an O
s 8
g o
g A
-
o O
o =
g5
~
mm
Oe
3 8
m.h.,
r)
S L
=)
L =
=0
wt
g
]
Qo
S g
B~
.W,m\
o o
= 9
55
wos
= .8
2 o
m.,m
3
w8
o0 5
[Sopys#

Evaluation
Speedup

Speedup - compared to previous algorithm which recounted all triangles after each update

(8] S
9 S
Y

@@ uk-2002(insertion) vV com-orkut(insertion)
@@ uk-2002(deletion) v—v com-orkut(deletion)

Questions?

