
EmptyHeaded
Aaron Huang



Motivation

• High Level Engines – SQL like, easy to use
• Low Level Engines – Faster/optimized, harder to write/use

• EmptyHeaded – Create an engine with the simplicity of high level 
engine yet the speed of low level engine



• SIMD – Single Instruction Multiple Data
• GHD – Generalized Hypertree Decomposition
• Multiway Join - join multiple tables at same time
• Worst Case Optimal Join – optimal algorithm with worst case usage 

(output size of join)

Definitions



Overview



Preliminaries
Compiler
Execution
Results



Worst Case Optimal Join – Fractional Cover

• Theoretical tight bound of worst case optimal join
• Hypergraph (V,E)
• V – attribute of query
• E – relation

• Define vector X with a component for each edge in the graph

X = <e1, e2, e3 >
A B

C

e1

e3e2



Feasible Cover

• Feasible Cover - Each vertex v, ∑"∈$ %" ≥ 1
• Upper bound , ()* ≤ ∏-"./
• Triangle Query – A,B,C
• (1,1,0) -> O(N2)
• (½, ½, ½) -> O(N3/2)

A B

C

e1

e3e2

X = <e1, e2, e3 >



Input Data

40

20

10

543 300

1.7 9.5

3.8

6.4



Example Queries

• Triangle

• 4 Clique

• Lollipop

• Barbell



Preliminaries

Compiler
Execution
Results



GHD

(½, ½, ½, 0, ½, ½, ½) O(N3) O(N3/2 + OUT)



Push Down

• Within Node
• Reorder attributes to allow early termination in trie (x,x’) 

-> (x’,x)

• Across Node
• High selectivity nodes at bottom
• Choose lowest width GHD’s – fractional hypertree width

• O(Nfhw)
• If A covers unselected attributes of B, add B as child of A
• Maximize the depth (sum of heights) of fhw GHD trees

• Up to around 104 speedup



Redundancies

• 2 Nodes equivalent if
• do the same join on same input
• do same aggregation, selection, projection
• have same subtree result

• 2x increase in Barbell Query



Preliminaries
Compiler

Execution
Results



Layouts

• Uint – efficient sparse data representation
• Bitset – good parallelism for dense data

• Pshort
• Varint
• Bitpacked



Bitset

• Set of pairs (offset, bit vector)
• Offset is index of the smallest value in the vector

• High parallelism
• Intersect 2 bitsets

• uint intersection of offsets to find potential block match
• SIMD intersection of blocks

• Instead of 4 element in SIMD reg, up to 256 elements



Pshort

• Values close to each other share prefix

• 3 values share prefix 0x10000
• 96 bits vs 80 bits



Varint

• Value differences encoded
• Bottom 7 bits: store data
• 8th bit: data extends to next byte or not

• Good for dense, large data



Bitpacked

• Partition into blocks, compress each block
• Can compute differences in parallel SIMD
• Pack the difference into minimum block width



Density Skew

• Varint and Bitpacked decoding takes too long
• Pshort hard to convert/not compatible with other representation

• Relation (Graph) Level
• Sparse – uint

• Set Level (Vertex)
• Sparse – uint, dense – bitset

• Block Level (Blocks in set)
• Sparse – uint, dense – bitset



Density Skew – Optimize

• Relation Level – doesn’t optimize for density at all, 7.3x slower
• Set Level – at most 1.6x slower than optimal
• Block Level – at most 3.2x slower
• Need to call more intersections and merge
• 2.5x overhead

• Set Optimizer
• Dense – Bitset if each value fits into SIMD register space
• Sparse – Uint if values greater than that



Intersections – uint*uint

• SIMDShuffling – compare pairs of blocks in sets
• V1 – iterate through smaller set, SIMD comparison with larger
• V3 – V1 but do binary search on 4 blocks
• SIMDGalloping – V1 but do scalar binary search
• BMiss – SIMD to compare parts, then scalar comparison for full match



SIMD Shuffling

…

SIMD Reg

SIMD Reg

SIMD Reg

SIMD Reg

SIMD Reg

SIMD Reg

O(N2)



V1

• A,B sorted
• Uint a, Block b
• Find block where last element in b 

greater than a
• SIMD Comparison to find match …

A

B

uint SIMD Reg

SIMD Reg



V3

• A,B sorted
• Uint a, Block b
• Find group of 4 blocks where last 

element greater than a
• Binary Search the 4 blocks
• SIMD Comparison to find match

…

A

B

uint SIMD Reg

SIMD Reg

SIMD Reg

SIMD Reg

…



SIMD Galloping

• A,B sorted
• Uint a, Block b
• Check block groups of exponential size 

(1,2,4,…)
• Binary search group
• SIMD Comparison

…

A

B

uint

…



Cardinality Skew

• Set Cardinality difference – difference in size between sets
• Galloping algorithms work well when one set much smaller than the 

other
• Have inherent overhead over normal algorithms
• Use SIMDShuffling by default, and SIMDGalloping if cardinality ratio 

over 1:32



Node Ordering

• Random
• BFS
• Strong Runs – BFS starting at highest degree node
• Degree
• Rev-Degree
• Shingle – order by similar neighbors

• Selecting Intersection and Layout has greater effect, don’t care about 
ordering 



Summary of EmptyHeaded Optimizations

• GHD Ordering
• Attribute (within GHD node)
• GHD (across GHD node)

• Layout (Dense vs. Sparse)
• Intersection (Shuffling vs. Galloping)



Preliminaries
Compiler
Execution

Results



Experiment

• Dataset
• Low Density Skew – LiveJournal, Orkut, Patents
• Medium Density – Twitter, Higgs
• High Density – Google+

• Low-Level Engines – PowerGraph, CGT-X, Snap-R
• High Level Engines – LogicBlox, SocialLite



Results – Triangle Counting



Results – Optimizations



Galois Results – PageRank, SSSP

• Galois
• PageRank

• Around 2-3x faster, 5x on Google+
• 271 lines vs. EmptyHeaded 3

• SSSP
• 2-30x faster
• 172 lines vs. EmptyHeaded 2



RDF

• Subject -> Predicate -> Object
• Extra Optimization - Pipelining
• Since triples may share many common subject prefixes etc.
• Can Pipeline GHD



Performance



Optimizations


