Distributed Evaluation of
Subgraph Queries Using
Worst-Case Optimal
Low-Memory Dataflows

Khaled Ammar, Frank McSherry, Semih Salihoglu, Manas Joglekar

Presented by: Ramya Nagarajan
Spring 2019

Motivation

Existing Approaches
Dataflow Primitive
Contributions
Implementation
Evaluation

Further Work

Agenda

Motivation

Subgraph queries are a fundamental computation performed by many
applications
o Clique-finding for related page detection

o Diamond-finding for social network recommendation systems
Efficiency and scalability as primary goals

Linear use of memory, worst-case optimal computation and communication
costs

Contributions

o BigJoin

o distributed algorithm for static graphs

o Achieves a subset of theoretical guarantees
o Delta-BiGJoin:

o Distributed algorithm for dynamic graphs

o Achieves same theoretical guarantees in insertion-only workloads
o BigJoin-S:

o Distributed algorithm for static graphs

o Achieves all theoretical guarantees

o Notable theoretical guarantee: balances work-load across distributed

workers on arbitrary inputs instances

Existing Approaches

o Distributed Approaches:

o Edge-at-a-time

o Variants of Shares or Hypercube
o Serial Approaches:

o Vertex-at-a-time

Edge-at-a Time
Approaches

o Treat query subgraph as a relational query
o Execute series binary joins to determine result
o Provably worst suboptimal:

o Worst-case O(IN?) computations

open-tri(ai,az,as) :=edge (ai, az),edge (az, as)

tri(ai,az,as) :=open-tri (ai, az,as),edge (as, ai)

Shares Algorithm

Given a distributed cluster with w workers, n relations, m attributes (ie n edges,
m vertices)

Divides the output space equally over w workers

Replicates edge tuples and distributes each tuple to every worker that can
produce an output depending on tuple

Workers run local join algorithm on received input

Improved communication and computation costs

Super-linear cumulative memory growth

Vertex-at-a-Time
Approaches

o Generic Join:
o Starts by finding all al vertices that will end up in output
o Then (al, a2), etc.

Generic Join Algorithm

o Global Attribute Ordering
o Extension Indices
o a,...a_subsetsin queries
o Mapstoj,...j subset
o Prefix Extension Stages
o Iteratively compute result of Q when each relation is restricted to the first j
attributes in common global order

; Dataflow Primitive

o Starts with a collection of Pi tuples stored across w workers
o Produces the P, , tuples across the same workers
o 4 steps:

o Initialization

o Count Minimization

o Candidate Proposal

0 Intersection

; Dataflow Primitive :

o Initialization:
o Tuples of P are distributed amongst workers arbitrarily
o Each prefix transformed into a triple:
o (prefix, smallest candidate set size, index of relation with that number of
candidates)

; Dataflow Primitive :

o Count Minimization:
o Workers exchange triples
o Place each triple at the worker with access to the corresponding extension set
o Each triple per worker updates its extension set
o Final result if collection of triples indicating the prefix relations with the fewest
extensions

; Dataflow Primitive

o Candidate Proposal
o Produce triple (p, min-c, min-i)
o Each extension e of P
o Intersection
o Workers exchange candidate tuples for each relation

: Contributions °

o BigJoin: distributed algorithm for static graphs
o Achieves a subset of theoretical guarantees
o Delta-BiGJoin:
o Distributed algorithm for dynamic graphs
o Achieves same theoretical guarantees in insertion-only workloads
o BigJoin-S:
o Distributed algorithm for static graphs
o Achieves all theoretical guarantees
o Notable theoretical guarantee: balances work-load across distributed workers on
arbitrary inputs instances

BiGJoin:

Joins on Static Relations

o Used for evaluating queries on static graphs
o Steps:
o Arbitrarily order attributes
o Build indices over each relation for each prefix in global order
0 Assemble dataflows for extending each P, to P, for each attribute a,

° BiGJoin Analysis

O(mnMaxOut) communication and computation costs
o Equalto GJ
Cumulative Memory Required:
o O(mIN + mB)
Good work-load balance across workers
No guaranteed workload balance on adversarial inputs

Delta-BiGJoin:

Joins on Dynamic Relations

o Delta-GJ Algorithm

o QueryQ
o For each relation R, have some change to the deletion or addition of records in that
relation

o New delta query for each relation
o Assume that tuples in record are labeled s.t can tell inserted records apart from
existing records
o Union of delta queries results in correct output query

Delta-BigJoin

WALLAUANSWA WALV LWJALVL VY Rilfe TU WWAME W WWALLWLIe

dQ]_ = AR]_, R2, R3, veey R'n,
dQ2 = Rll; ARZ’ RS’ vy Rn
dQs := R1, Ry, ARs, ..., Rn

dQn = R;.’ Rl2a Ré’ A ARTL

18

° Delta-BiGJoin Analysis

o Communication and computation cost: O(mn? + MaxOut)
o Cumulative Memory: O(mNIN(z) + mB)
o Rounds of Computation: O(Mmn"2Max0utQ) /B> + 7mn?)

; BiGJoin-S -

o Sources of Imbalance:

o Sizes of extension indices
o A single worker stores the entire extension set for a give prefix

o Number of Proposals
o Imbalanced amount of candidate extensions to prefixes

o Number of Index Lookups
o If many prefixes originate from the same relation R, there can be an imbalance

in the number of prefixes and extensions each worker receives

: BiGJoin-S

o Handling Skew
o Skew-Resilient Indices
o Modified Dataflow Primitive
o Extension-Resolve
o Intersect
o Count
o Balance

21

. BiGJoin-S

o Skew-resilient Extension Indices
o Split extension indices across workers
o Count Index
o Extension Resolver Index
o Original Extension Index

22

; BiGJoin-S -

o Extension-Resolve
o InBig-Join:
o Pass (p, k) pair to extension resolver
o Receive candidate extension in return
o Skew in number of prefixes an extension has

o Big-JoinS:
o Locally aggregate extension requests made to a certain relation for a certain (p,
k)

o Send only one version of this request

; BiGJoin-S -

o Intersect

o Big-Join:
o Each (p, e) is routed through each of the Extension sets in order
o Big-JoinS:

o Distributed lookup of (p, e) by sending to the worker that holds the Extension
set for (p, e)

; BiGJoin-S -

o Balance
o Skew: Imbalance in the amount of work each worker receives after count minimization
o Each worker deterministically distributes its amount of work amongst all workers

1\/1)\}1 LYV].

THEOREM 3.4. Suppose %, > max{w, log(INXx MaxOutg)}
and let B = wB'. Then BiGJoin-S has the following costs:

e Cumulative computation and communication cost of

O(mnMazOutqg) and memory cost of O(mnIN + mB).

mnMazOut
e O B Q

e With at least probability 1—O(;5), each worker performs O(B')
communication and computation in each round of the algorithm.
In MPC terms, the load of BiGJoin-S is O(% + mB’), so

assuming B’ < %, BiGJoin-S has optimal load.

) rounds of computation.

26

: Evaluation .

Evaluate triangle finding on standard graphs on different systems
o Establish a baseline for running time

Implementation scaling
o Vary number of workers across single machine and multiple machines
o 64 billion-edge graph

Evaluate BigJoin and Delta-BiGJoin

Batch size of 10,000

Experimental Setup

e A B I [N G s 25 St O
Name Vertices | Edges
LiveJournal (LJ) [36] 4.8M 68.9M
Twitter (TW) [35] 42M 1.5B
UK-2007 (UK) [35] 106M 3.7B
Common Crawl (CC) [60] 1.7B 64B

28

: COST :

Number of cores that the algorithm needs to outperform an optimized single-threaded
version

18000
16000 -+Single-thread
14000 Bigloin
S 12000 Delta-Bigloin
£ 10000
£ 8000 X
i— 6000 —————— i A
4000 e
2000
0
0 2 4 6 8 10 12 14 16

#workers

25

o EmptyHeaded

Evaluation against
Frameworks

o Highly-optimized shared-memory parallel system
o Evaluating subgraph queries on static graphs using GJ

Query EH-R | EH-I | BiGJoinT-R | BiGJoinT-I
Triangle-LJ 1.2s 150.3s | 6.5s 1.9s
Diamond-LJ | 31.7s | 150.3s | 712.3s 1.9s
Triangle-TW | 213.8s | 41558 | 588s 34.4s

30

o Arabesque

Evaluation against
Frameworks

o Distributed system specialized in finding subgraphs

Query Arbsg-R | Arbsg-I | BiGJoinT-R | BiGJoinT-I
Triangle | 69.0s 1.46B 3.4s 38M
4-clique | 273.7s 18.7B 21.8s 350M

51

0 Future Work

o Improving skew resilience of BigJoin
o Utilizing symmetries of queries

o Practical algorithms that have better than worst-case optimality

