
Distributed Evaluation of 
Subgraph Queries Using 
Worst-Case Optimal 
Low-Memory Dataflows

Khaled Ammar, Frank McSherry, Semih Salihoglu, Manas Joglekar

Presented by: Ramya Nagarajan
Spring 2019



Agenda

○ Motivation

○ Existing Approaches

○ Dataflow Primitive

○ Contributions

○ Implementation

○ Evaluation

○ Further Work

2



Motivation

○ Subgraph queries are a fundamental computation performed by many 
applications
□ Clique-finding for related page detection

□ Diamond-finding for social network recommendation systems

○ Efficiency and scalability as primary goals

○ Linear use of memory, worst-case optimal computation and communication 
costs

3



Contributions

○ BigJoin
□ distributed algorithm for static graphs
□ Achieves a subset of theoretical guarantees

○ Delta-BiGJoin:
□ Distributed algorithm for dynamic graphs
□ Achieves same theoretical guarantees in insertion-only workloads

○ BigJoin-S:
□ Distributed algorithm for static graphs
□ Achieves all theoretical guarantees
□ Notable theoretical guarantee: balances work-load across distributed 

workers on arbitrary inputs instances

4



Existing Approaches

○ Distributed Approaches:
□ Edge-at-a-time
□ Variants of Shares or Hypercube

○ Serial Approaches:
□ Vertex-at-a-time

5



Edge-at-a Time 
Approaches

○ Treat query subgraph as a relational query
○ Execute series binary joins to determine result
○ Provably worst suboptimal:

□ Worst-case O(IN2) computations

6



Shares Algorithm

○ Given a distributed cluster with w workers, n relations, m attributes (ie n edges, 
m vertices)

○ Divides the output space equally over w workers
○ Replicates edge tuples and distributes each tuple to every worker that can 

produce an output depending on tuple
○ Workers run local join algorithm on received input
○ Improved communication and computation costs
○ Super-linear cumulative memory growth

7



Vertex-at-a-Time 
Approaches

○ Generic Join:
□ Starts by finding all a1 vertices that will end up in output
□ Then (a1, a2), etc.

8



Generic Join Algorithm

○ Global Attribute Ordering
○ Extension Indices

□ a1...am subsets in queries
□ Maps to j1 … jm subset

○ Prefix Extension Stages
□ Iteratively compute result of Q when each relation is restricted to the first j 

attributes in common global order

9



Dataflow Primitive

○ Starts with a collection of Pj tuples stored across w workers
○ Produces the Pj+1 tuples across the same workers
○ 4 steps:

□ Initialization
□ Count Minimization
□ Candidate Proposal
□ Intersection

10



Dataflow Primitive

○ Initialization:
□ Tuples of Pj are distributed amongst workers arbitrarily
□ Each prefix transformed into a triple: 

○ (prefix, smallest candidate set size, index of relation with that number of 
candidates)

11



Dataflow Primitive

○ Count Minimization:
□ Workers exchange triples
□ Place each triple at the worker with access to the corresponding extension set
□ Each triple per worker updates its extension set
□ Final result if collection of triples indicating the prefix relations with the fewest 

extensions

12



Dataflow Primitive

○ Candidate Proposal
□ Produce triple (p, min-c, min-i)
□ Each extension e of P 

○ Intersection
□ Workers exchange candidate tuples for each relation

13



Contributions

○ BigJoin: distributed algorithm for static graphs
□ Achieves a subset of theoretical guarantees

○ Delta-BiGJoin:
□ Distributed algorithm for dynamic graphs
□ Achieves same theoretical guarantees in insertion-only workloads

○ BigJoin-S:
□ Distributed algorithm for static graphs
□ Achieves all theoretical guarantees
□ Notable theoretical guarantee: balances work-load across distributed workers on 

arbitrary inputs instances

14



BiGJoin: 
Joins on Static Relations 

○ Used for evaluating queries on static graphs
○ Steps:

□ Arbitrarily order attributes
□ Build indices over each relation for each prefix in global order
□ Assemble dataflows for extending each Pj to Pj+1 for each attribute ai

15



BiGJoin Analysis

○ O(mnMaxOutQ) communication and computation costs
□ Equal to GJ

○ Cumulative Memory Required:
○ O(mIN + mB)

○ Good work-load balance across workers
○ No guaranteed workload balance on adversarial inputs

16



Delta-BiGJoin: 
Joins on Dynamic Relations 

○ Delta-GJ Algorithm
□ Query Q
□ For each relation R, have some change to the deletion or addition of records in that 

relation
□ New delta query for each relation

○ Assume that tuples in record are labeled s.t can tell inserted records apart from 
existing records

□ Union of delta queries results in correct output query

□

17



Delta-BigJoin

18



Delta-BiGJoin Analysis

○ Communication and computation cost: O(mn2 + MaxOutQ)
○ Cumulative Memory: O(mNIN(z) + mB)
○ Rounds of Computation: O((mn^2MaxOutQ)/B’) + zmn2)

19



BiGJoin-S

○ Sources of Imbalance:
□ Sizes of extension indices

○ A single worker stores the entire extension set for a give prefix
□ Number of Proposals

○ Imbalanced amount of candidate extensions to prefixes
□ Number of Index Lookups

○ If many prefixes originate from the same relation R, there can be an imbalance 
in the number of prefixes and extensions each worker receives

20



BiGJoin-S

○ Handling Skew
□ Skew-Resilient Indices
□ Modified Dataflow Primitive

○ Extension-Resolve
○ Intersect
○ Count
○ Balance

21



BiGJoin-S

○ Skew-resilient Extension Indices
□ Split extension indices across workers
□ Count Index
□ Extension Resolver Index
□ Original Extension Index

22



BiGJoin-S

○ Extension-Resolve
□ In Big-Join:

○ Pass (p, k) pair to extension resolver
○ Receive candidate extension in return

□ Skew in number of prefixes an extension has
□ Big-JoinS:

○ Locally aggregate extension requests made to a certain relation for a certain (p, 
k)

○ Send only one version of this request

23



BiGJoin-S

○ Intersect
□ Big-Join:

○ Each (p, e) is routed through each of the Extension sets in order
□ Big-JoinS:

○ Distributed lookup of (p, e) by sending to the worker that holds the Extension 
set for (p, e)

24



BiGJoin-S

○ Balance
□ Skew: Imbalance in the amount of work each worker receives after count minimization
□ Each worker deterministically distributes its amount of work amongst all workers

25



26



Evaluation

○ Evaluate triangle finding on standard graphs on different systems
□ Establish a baseline for running time

○ Implementation scaling
□ Vary number of workers across single machine and multiple machines
□ 64 billion-edge graph

○ Evaluate BigJoin and Delta-BiGJoin
○ Batch size of 10,000

27



Experimental Setup

28



COST

○ Number of cores that the algorithm needs to outperform an optimized single-threaded 
version

29



Evaluation against 
Frameworks

○ EmptyHeaded
□ Highly-optimized shared-memory parallel system
□ Evaluating subgraph queries on static graphs using GJ

30



Evaluation against 
Frameworks

○ Arabesque
□ Distributed system specialized in finding subgraphs

31



Future Work

○ Improving skew resilience of BigJoin

○ Utilizing symmetries of queries

○ Practical algorithms that have better than worst-case optimality

32


