
A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs

George Karypis and Vipin Kumar

Jared Di Carlo

April 23, 2019

Graph Partitioning

I Divide vertices into p parts of roughly equal size (or sum of
vertex weights)

I Minimize edges across parts

I NP-Complete

Applications of k-way Graph Partitioning

I Scheduling work on k processors
I Edges represent sharing of data between tasks
I Sparse matrix vector product

I Sparse matrix factorization
I Reorder matrix to make the factorization sparse too

I Power Law Graphs?

Algorithms for Graph Partitioning

I Spectral Partitioning: Slow

I Geometric Partitioning : Requires vertices to have coordinates

I Multilevel: Fast, but low quality

Algorithms for Graph Partitioning

I Spectral Partitioning: Slow

I Geometric Partitioning : Requires vertices to have coordinates

I Multilevel: Fast, but low quality

Algorithms for Graph Partitioning

I Spectral Partitioning: Slow

I Geometric Partitioning : Requires vertices to have coordinates

I Multilevel: Fast, but low quality

Multilevel Partitioning

I Three phases
I Coarsening (collapse vertices)

I Partition
I Uncoarsening (possibly refining the partitions)

Multilevel Partitioning

I Three phases
I Coarsening (collapse vertices)
I Partition

I Uncoarsening (possibly refining the partitions)

Multilevel Partitioning

I Three phases
I Coarsening (collapse vertices)
I Partition
I Uncoarsening (possibly refining the partitions)

Coarsening

I Each coarsening iteration collapses a maximal matching
I Matching: set of edges which hit each vertex at most once
I Coarsen: Collapse edges in matching
I Maximal Matching: Every non-matched edge touches a vertex

which has a matched edge

Coarsening Strategies

Random

I Visit random vertices, add random edges. O(|E |)
I Terminate when there are no more vertices that can have

edges added

I Works well on “engineering” graphs - meshes

Coarsening Strategies

Heavy Edges

I Greedy

I Visit random vertices, pick heaviest edge to remove: O(|E |)
I Can reduce the edge-cut because heavy edges are removed

I Does well for VLSI graphs

Heavy Clique

I Collapse nodes which are unlikely to be split by the bisection

I Randomly visit vertices, pick edges leading to highest
edge-density vertex

I Edge Density: 2 EU
U(U−1) = 2 CE(u)+CE(v)+EW (u,v)

(VW (u)+VW (v))(VW (u)+VW (v)−1)

Partitioning Phase

I This step is fast - coarse graph should have around 100
vertices

I Spectral Bisection, KL, GGP

Spectral Bisection

I Consider Q = D − A where D is diagonal degree matrix, A is
adjacency matrix.

I Eigenvectors: Qx = λix

I Let x represent a partition with xi ∈ {−1, 1}
I The product Qx is proportional to the number of cut edges

KL Algorithm

I Iterative - greedily swaps vertices to make things better

I Can get stuck in local minima

I Run the algorithm a few times (5 - 10)

I Can be improved by prioritizing vertices with a large effect

Graph Growing Partition (GGP)

I BFS from a random vertex until half the vertices are added

I Sensitive to initial choice

Uncoarsening

I As vertices are expanded, move ones on the edge to improve
edge-cut

I KL, KL(1), KL Boundary

KL, KL(1)

I Same algorithm as KL previously

I Terminates very quickly, as the partition is already good

I Dominated by insertion into data structure

I KL(1) runs a single iteration, allowing simpler data structures

I Boundary KL - only consider vertices that are on the edge

I Use BKL(1) on large graphs, BKL on smaller graphs

Experiments - Graph Partition

I SGI Challenge, 200 MHz MIPS R4400, 1.2 GB RAM

I Vertices: 4960 to 448695

I Edges: 9462 to 3358036

I 2D/3D meshes, stiffness matrix, “Chemical Engineering”,
Highway, Stiffness matrix, Circuits (adder, memory,
sequential)

I Coarsening: Heavy Edge has the lowest edge cut, and good
runtime

I Partitioning: GGP or Spectral, depending on graph

I Uncoarsening: BKL or BKL dynamic - dynamic is faster, but
BKL is 2% better

Experiments - Sparse Matrix Factorization

I Parallelization - better than MMD (greedy)

I 56x speedup on 128-CPU Cray T3D

Comparison

