A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs George Karypis and Vipin Kumar

Jared Di Carlo

April 23, 2019

KORK ERKER ADE YOUR

Graph Partitioning

- \triangleright Divide vertices into p parts of roughly equal size (or sum of vertex weights)
- \blacktriangleright Minimize edges across parts
- \blacktriangleright NP-Complete

(a) A poor edge-cut partitioning. Vertices are assigned to partitions at random, thus, there are many inter-partition links.

(b) A good edge-cut of the same graph, where vertices that are highly connected are assigned to the same partition.

Applications of k-way Graph Partitioning

- \triangleright Scheduling work on k processors
	- \blacktriangleright Edges represent sharing of data between tasks
	- \blacktriangleright Sparse matrix vector product
- \blacktriangleright Sparse matrix factorization
	- \blacktriangleright Reorder matrix to make the factorization sparse too

KORK ERKER ADE YOUR

 \blacktriangleright Power Law Graphs?

Algorithms for Graph Partitioning

 \blacktriangleright Spectral Partitioning: Slow

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Algorithms for Graph Partitioning

- \blacktriangleright Spectral Partitioning: Slow
- \triangleright Geometric Partitioning : Requires vertices to have coordinates

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O *

- \blacktriangleright Spectral Partitioning: Slow
- \triangleright Geometric Partitioning : Requires vertices to have coordinates

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \triangleright Multilevel: Fast, but low quality

Multilevel Partitioning

- \blacktriangleright Three phases
	- \triangleright Coarsening (collapse vertices)

イロト イ御 トイミト イミト ニミー りんぴ

Multilevel Partitioning

\blacktriangleright Three phases

 \triangleright Coarsening (collapse vertices)

イロト イ御 トイミト イミト ニミー りんぴ

 \blacktriangleright Partition

Multilevel Partitioning

\blacktriangleright Three phases

- \triangleright Coarsening (collapse vertices)
- \blacktriangleright Partition
- \triangleright Uncoarsening (possibly refining the partitions)

K ロ > K @ > K 할 > K 할 > 1 할 : ⊙ Q Q^

Coarsening

 \blacktriangleright Each coarsening iteration collapses a *maximal matching*

- \triangleright Matching: set of edges which hit each vertex at most once
- \triangleright Coarsen: Collapse edges in matching
- \triangleright Maximal Matching: Every non-matched edge touches a vertex which has a matched edge

 QQ

Random

- \triangleright Visit random vertices, add random edges. $O(|E|)$
- \blacktriangleright Terminate when there are no more vertices that can have edges added

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \triangleright Works well on "engineering" graphs - meshes

Coarsening Strategies

Heavy Edges

- \blacktriangleright Greedy
- \triangleright Visit random vertices, pick heaviest edge to remove: $O(|E|)$
- \triangleright Can reduce the edge-cut because heavy edges are removed
- \triangleright Does well for VLSI graphs

Heavy Clique

- \triangleright Collapse nodes which are unlikely to be split by the bisection
- \triangleright Randomly visit vertices, pick edges leading to highest edge-density vertex

$$
\blacktriangleright \text{ Edge Density: } 2\frac{E_U}{U(U-1)} = 2\frac{CE(u) + CE(v) + EW(u,v)}{(VW(u) + VW(v))(VW(u) + VW(v) - 1)}
$$

KORKA SERKER ORA

Partitioning Phase

 \blacktriangleright This step is fast - coarse graph should have around 100 vertices

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

> Spectral Bisection, KL, GGP

- \triangleright Consider $Q = D A$ where D is diagonal degree matrix, A is adjacency matrix.
- Eigenvectors: $Qx = \lambda_i x$
- ► Let x represent a partition with $x_i \in \{-1, 1\}$
- \triangleright The product Qx is proportional to the number of cut edges

KORK ERKER ADE YOUR

- Iterative greedily swaps vertices to make things better
- \triangleright Can get stuck in local minima
- Run the algorithm a few times $(5 10)$
- \triangleright Can be improved by prioritizing vertices with a large effect

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Graph Growing Partition (GGP)

 \triangleright BFS from a random vertex until half the vertices are added

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \blacktriangleright Sensitive to initial choice

Uncoarsening

 \triangleright As vertices are expanded, move ones on the edge to improve edge-cut

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \triangleright KL, KL (1) , KL Boundary

KL, KL(1)

- \triangleright Same algorithm as KL previously
- \triangleright Terminates very quickly, as the partition is already good
- \triangleright Dominated by insertion into data structure
- \triangleright KL(1) runs a single iteration, allowing simpler data structures

KORK ERKER ADE YOUR

- \triangleright Boundary KL only consider vertices that are on the edge
- \triangleright Use BKL(1) on large graphs, BKL on smaller graphs

Experiments - Graph Partition

- ► SGI Challenge, 200 MHz MIPS R4400, 1.2 GB RAM
- \blacktriangleright Vertices: 4960 to 448695
- Edges: 9462 to 3358036
- \triangleright 2D/3D meshes, stiffness matrix, "Chemical Engineering", Highway, Stiffness matrix, Circuits (adder, memory, sequential)
- \triangleright Coarsening: Heavy Edge has the lowest edge cut, and good runtime
- ▶ Partitioning: GGP or Spectral, depending on graph
- ▶ Uncoarsening: BKL or BKL dynamic dynamic is faster, but BKL is 2% better

KORK ERKER ADE YOUR

Experiments - Sparse Matrix Factorization

LADLE O

The number of operations required to factor various matrices when ordered with multiple minimum degree (MMD), spectral nested dissection (SND), and our multilevel nested dissection (MLND).

 \triangleright Parallelization - better than MMD (greedy)

KORK ERKER ADE YOUR

▶ 56x speedup on 128-CPU Cray T3D

Comparison

Deptre of providence Newslette Cookington Number of Trade Globa^{View} Local View Run Time Quality \triangle **Spectral Bisection** $\overline{1}$ \circ 8888 ---no 4444 **Multilevel Spectral Bisection** \circ **HER** \triangle 1 no **Mulitlevel Spectral Bisection-KL** $\bullet\bullet$ **HELL AA** $\mathbf{1}$ no **Multilevel Partitioning** $\bullet\bullet$ 0000 \blacksquare \triangle $\mathbf{1}$ no **Levelized Nested Dissection** \circ п. \triangle 1 no $\bullet\bullet$ $\bullet\bullet$ \circ .. ▲ 1 no **AA** Kernighan-Lin 10 $\bullet\bullet$ \bullet **HER** no 88 H D **AA** 50 no $\bullet\bullet$..

TABLE 9 Characteristics of various graph partitioning algorithms.