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Graph Partitioning

» Divide vertices into p parts of roughly equal size (or sum of
vertex weights)

> Minimize edges across parts
» NP-Complete

(a) A poor edge-cut partitioning. {(b) A good edge-cut of the same

Vertices are assigned to partitions graph, where vertices that are
at random, thus, there are many highly connected are assigned to
inter-partition links. the same partition.




Applications of k-way Graph Partitioning

» Scheduling work on k processors

» Edges represent sharing of data between tasks
» Sparse matrix vector product

» Sparse matrix factorization
» Reorder matrix to make the factorization sparse too

» Power Law Graphs?
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Algorithms for Graph Partitioning

» Spectral Partitioning: Slow
» Geometric Partitioning : Requires vertices to have coordinates

» Multilevel: Fast, but low quality
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Multilevel Partitioning

» Three phases

» Coarsening (collapse vertices)
» Partition

» Uncoarsening (possibly refining the partitions)

Multilevel Graph Bisection
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Coarsening

» Each coarsening iteration collapses a maximal matching
» Matching: set of edges which hit each vertex at most once

» Coarsen: Collapse edges in matching
» Maximal Matching: Every non-matched edge touches a vertex

which has a matched edge




Coarsening Strategies

Random
» Visit random vertices, add random edges. O(|E|)

» Terminate when there are no more vertices that can have
edges added

» Works well on “engineering” graphs - meshes



Coarsening Strategies

Heavy Edges
> Greedy
» Visit random vertices, pick heaviest edge to remove: O(|E|)
» Can reduce the edge-cut because heavy edges are removed
» Does well for VLSI graphs

Heavy Clique
» Collapse nodes which are unlikely to be split by the bisection

» Randomly visit vertices, pick edges leading to highest
edge-density vertex

CE(u)+CE(v)+EW (u,v
» Edge Density: 2 ( )*2(vvv(u)+W/(v))gv)vv(u)lvv\;(v)—l)




Partitioning Phase

» This step is fast - coarse graph should have around 100
vertices

» Spectral Bisection, KL, GGP

Multilevel Graph Bisection
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Spectral Bisection

v

Consider @ = D — A where D is diagonal degree matrix, A is
adjacency matrix.

v

Eigenvectors: Qx = \jx

» Let x represent a partition with x; € {—1,1}

v

The product @x is proportional to the number of cut edges



KL Algorithm

v

Iterative - greedily swaps vertices to make things better

» Can get stuck in local minima

v

Run the algorithm a few times (5 - 10)

v

Can be improved by prioritizing vertices with a large effect



Graph Growing Partition (GGP)

» BFS from a random vertex until half the vertices are added

» Sensitive to initial choice



Uncoarsening

> As vertices are expanded, move ones on the edge to improve
edge-cut

» KL, KL(1), KL Boundary

Multilevel Graph Bisection
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KL, KL(1)

v

Same algorithm as KL previously

v

Terminates very quickly, as the partition is already good

v

Dominated by insertion into data structure

v

KL(1) runs a single iteration, allowing simpler data structures

v

Boundary KL - only consider vertices that are on the edge

v

Use BKL(1) on large graphs, BKL on smaller graphs



Experiments - Graph Partition

» SGI Challenge, 200 MHz MIPS R4400, 1.2 GB RAM
» Vertices: 4960 to 448695
> Edges: 9462 to 3358036

» 2D/3D meshes, stiffness matrix, “Chemical Engineering”,
Highway, Stiffness matrix, Circuits (adder, memory,
sequential)

» Coarsening: Heavy Edge has the lowest edge cut, and good
runtime

» Partitioning: GGP or Spectral, depending on graph

> Uncoarsening: BKL or BKL dynamic - dynamic is faster, but
BKL is 2% better



Experiments - Sparse Matrix Factorization

The number of operations required to factor various matrices when ordered with multiple mini-
mum degree (MMD), spectral nested dissection (SND), and our multilevel nested dissection (MLND).

Matrix MMD SND MLND
144 2.4417e 11| 7.6580e+10 | 6.4756e+10
AELT 1.8720e+07 | 2.638le+07 | 1.6089e+07
598A 6.4065¢+10 | 2.5067e+10 | 2.2659e+10
AUTO 2.8393¢+12 | 7.8352e+11 | 6.0211e+11
BCSSTK: 9.1665e+08 | 1.8659e+09 | 1.3822e+09
BCSST 2.5785e+09 | 2.6090e+09 | 1.8021e+09 |
BCSSTK32 1.1673e+09 | 3.9420e+09 | 19685109
BRACK2 3.3123c+00 | 3.1463e+00 | 2.4973e+09
CANT L1719 +10 | 2.9719e+10 | 2.2032e+10
COPTER2 1.2004e+10 | 8.6755e+09 | 7.0724e+09
CYLINDER93 || 6.3504e+09 09
FINAN512 5.9340¢+09 1329e+09 08
FLAP 1.4246e+09 | 9.8081e+08 F08 |
INPROL 1.2653e+00 | 2.1875e+09 | 1.7999¢109
M14B 2.043Te+11 | 9.3665e+10 | 7.6535e+10
PWT 1.3819e+08 | 1.3919e+08 | 1.3633e+08
ROTOR 3.1091e+10 | 1.8711e+10 | 1.1311e+10
SHELL93 1.584de+10 | 1.384de+10 | 8.0177e+09
TORSO T.4538e+11 | 3.1842e+11 | 1.8538e+11
TROLL 1.684det1l | 1.280de+11 | 8.6914e+10
WAVE 4.2290e+11 | 1.535le+11 | 1.2602e+11

» Parallelization - better than MMD (greedy)
> 56x speedup on 128-CPU Cray T3D



Comparison

TABLE 9
Characteristics of various graph partitioning algorithms.
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