Speedup Graph Processing by Graph Ordering

Presenter: Haonan Wang

haonanw@mit.edu

April 23, 2019

Presenter: Haonan Wang (MIT) [Graph Ordering](#page-26-0) April 23, 2019 1/27

4 0 8

1 [Background](#page-2-0)

- **•** [Motivation](#page-3-0)
- [Graph Access Patterns](#page-6-0)

2 [Algorithm](#page-9-0)

- [The GO Algorithm](#page-11-0)
- [GO-PQ](#page-13-0)

4 0 8

Section 1

[Background](#page-2-0)

Presenter: Haonan Wang (MIT) [Graph Ordering](#page-0-0) April 23, 2019 3 / 27

K ロ ▶ K 御 ▶ K 唐

Subsection 1

[Motivation](#page-3-0)

Þ × ×

 299

Kロトメ部トメミ

Graphs are important

- **•** Graph is a popular data model for Big Data social graph, web graph, knowledge graph
- Large graph is emerging with increasing size Friendship connection in Facebook, Twitter,

CPU cache performance is key issue in efficiency in DBS

cache miss latency takes a half of the execution time in database systems

Design general optimization approach for graph model

 \leftarrow

Subsection 2

[Graph Access Patterns](#page-6-0)

K ロ ▶ K 御 ▶ K 唐

- 1: for each node $v \in N_O(u)$ do
- the program segment to compute/access v $2:$

Common Relationships: Neighbours / Sibling Key Idea here is that sibling relationship is a dominating factor.

$$
\binom{d_O(u)}{2} \gg d_O(u)
$$

Measure The Problem With Function

• Measure the Closeness of two points:

$$
S(u,v)=S_s(u,v)+S_n(u,v)
$$

• Our problems turns into a permutation problem!

 \bullet

Section 2

[Algorithm](#page-9-0)

Presenter: Haonan Wang (MIT) [Graph Ordering](#page-0-0) April 23, 2019 10 / 27

Þ þ.

× ×

K ロ ▶ K 御 ▶ K 舌

Theorem 2.1: Maximizing $F(\phi)$ to obtain an optimal permutation $\phi(\cdot)$ for a directed graph G is NP-hard.

The proof sketch is given in Appendix.

- All algorithms here are all approximate algorithms.
- \bullet If we set $w = 1$, the problem here is actually equivalent to the maximum traveling salesman problem, denoted as maxTSP for short.

Algorithm 1 $GO(G, w, S(\cdot, \cdot))$

1: select a node v as the start node, $P[1] \leftarrow v$; 2: $V_R \leftarrow V(G) \setminus \{v\}, i \leftarrow 2;$ 3: while $i \leq n$ do $4:$ $v_{max} \leftarrow \emptyset, k_{max} \leftarrow -\infty;$ 5: for each node $v \in V_R$ do $i-1$ $k_v \leftarrow \sum_{i=1}^n S(P[j], v);$ $6:$ $i = \max\{1, i-w\}$ $7:$ if $k_v > k_{max}$ then $8:$ $v_{max} \leftarrow v, k_{max} \leftarrow k_v;$ $9:$ $P[i] \leftarrow v_{max}, i \leftarrow i + 1;$ 10: $V_R \leftarrow V_R \setminus \{v_{max}\};$

Theorem 3.1: The algorithm GO gives $\frac{1}{2w}$ -approximation for maximizing $F(\phi)$ to determine the optimal graph ordering.

Table 1: F_{aa} and \overline{F}_w

• Go is expensive. Time complexity:

$$
O(w \cdot d_{max} \cdot n^2)
$$

• Reasons for the inefficiency (1) Repeatedly computes score function w times for the same pair (v_j , ν) while ν_j is in the window of size w (2)it scans every node ν in the set of remaining nodes VR in every iteration

Explain For What we do in the new algorithm

4 0 8

GOPQ algorithm

Algorithm 2 GO-PQ $(G, w, S(\cdot, \cdot))$

```
1: for each node v \in V(G) do
2:insert v into Q such that key(v) \leftarrow 0;
3: select a node v as the start node, P[1] \leftarrow v, delete v from Q;
4: i \leftarrow 2:
5: while i \leq n do
6:v_e \leftarrow P[i-1];7:for each node u \in N_O(v_e) do
8:if u \in \mathcal{Q} then \mathcal{Q} incKey(u);
9:for each node u \in N_I(v_e) do
10:if u \in \mathcal{Q} then \mathcal{Q} incKey(u);
11:for each node v \in N_O(u) do
12:if v \in \mathcal{Q} then \mathcal{Q} incKey(v);
13:if i > w + 1 then
14:v_h \leftarrow P[i - w - 1];15:for each node u \in N_O(v_h) do
16:if u \in \mathcal{Q} then \mathcal{Q} decKey(u);
17:for each node u \in N_I(v_h) do
18:if u \in \mathcal{Q} then \mathcal{Q}. decKey(u);
19:for each node v \in N_O(u) do
20:if v \in \mathcal{Q} then \mathcal{Q} decKey(v);
21:v_{max} \leftarrow Q.pop();22:P[i] \leftarrow v_{max}, i \leftarrow i + 1;
```
4 D F

÷

Implementation Of the Priority Queue

Figure 7: The Priority Queue: $\mathcal{Q}, \mathcal{Q}_h$, and top

4 0 8

- Lazy Update, use key and update instead of key
- Maintain the double link list until there should be changes
- Use the head and end to get the position for the first element and the last element of the subqueue with same key

Algorithm 3 decKey (v_i)

1: $update(v_i) \leftarrow update(v_i) - 1;$

4 D F ⊣⊢ \sim QQ

Algorithm 4 incKey (v_i)

$$
1: update(v_i) \leftarrow update(v_i) + 1;
$$

- 2: if update $(v_i) > 0$ then
- $3:$ $update(v_i) \leftarrow 0, x \leftarrow \overline{key}(v_i), \overline{key}(v_i) \leftarrow \overline{key}(v_i) + 1;$

4: delete
$$
v_i
$$
 from Q ;

- $5:$ insert v_i into Q in the position just before head[x];
- $6:$ update the head Q_h array accordingly;

7: if
$$
\overline{\text{key}}(v_i) > \overline{\text{key}}(\text{top})
$$
 then

 $8:$ $\mathsf{top} \leftarrow v_i$:

4 0 8

 QQ

Algorithm 5 pop $()$

- 1: while update(top) < 0 do
- $2:$ $v_t \leftarrow$ top;
- $3:$ $\overline{\text{key}}(v_t) \leftarrow \overline{\text{key}}(v_t) + \text{update}(v_t);$
- $4:$ $update(v_t) \leftarrow 0;$
- $5:$ if $\overline{\text{key}}(\text{top}) \leq \overline{\text{key}}(\text{next}(\text{top}))$ then
- $6:$ adjust the position of v_t and insert v_t just after u in Q , such that $\overline{\text{key}}(u)$ > $\overline{\text{key}}(\text{top})$ and $\overline{\text{key}}(\text{next}(u)) < \overline{\text{key}}(\text{top});$
- $7:$ $top \leftarrow next(top);$
- $8:$ update the head array;
- 9: $v_t \leftarrow$ top;
- 10: remove the node pointed by top from Q and update top \leftarrow next(top);
- 11: return v_t ;

4 0 8

Section 3

[Evaluation](#page-21-0)

Presenter: Haonan Wang (MIT) [Graph Ordering](#page-0-0) April 23, 2019 22 / 27

E

K ロ ト K 伊 ト K

Implementation Of the Priority Queue

(a) $F(\cdot)$ by Different Orderings

 \leftarrow

Table 3: Cache Statistics by PR over Flickr ($M =$ Millions)

4 0 8

Table 6: L1 Cache Miss Ratio on Flickr (in percentage %)

4 0 8

Table 10: Running Time of Diam (in second)

4 0 8

 QQ

The End

Þ

∍ \mathcal{A} ×

K ロ ト K 伊 ト K