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Motivation: Why Compress?

Ø The dimensions of sparse 
matrices are usually a lot larger 
than the number of non-zeros. 
ØThat is – for an N x M matrix, we 

usually have that NNZ << N x M
ØA lot of work doing computation 

can be saved



Motivation: Use Cases

ØBuilding block of iterative methods to solve large, sparse linear
systems (Ax = b)

ØApproximation of Eigen values and Eigen vectors (Ax = λx)
ØApplications in Economic Modelling, Physics, Medicine, etc…



Motivation: Difficulty with Compression

ØSpMV hard to optimize due to:
ØLow Operational Intensity
ØIrregular accesses into input vector
ØIndirect memory accesses due to sparse structure
ØFor very short rows loop overhead can be high
ØLarge amount of storage formats



Related Work

ØImplement SpMV for several formats
qDrawbacks

ØComplicates library since we need a lot of kernels that do the same thing
ØRequires users to have deep understanding of the problem to pick the right format for 

their specific domain

ØAuto tune kernels based on architecture and application parameters
ØArchitecture parameters: cache and registers size, vectorization capabilities
ØApplication parameters: symmetry, sparsity pattern
qDrawbacks

ØTuning still limited to the formats that the library supports
Ø Incurs high overhead making tuning impractical for online use.



SparseX

Ø Key idea is the use of a custom matrix format, namely the 
Compressed Sparse eXtended format (CSX)
ØDesigned to be auto tuned
ØCan detect a large number of features in a matrix

ØAllows SparseX to export a simple BLAS-like interface while 
maintaining performance of special matrix formats



Compression Techniques: Coordinate Format 
(COO)

Row index - {0,    0,    0,     0,    1,    1,     1,    2,    2,    2,     3,    3,    4,    4,     5,    5} 
Col index   - {0,    1,    2,     3,    0,    1,     2,    0,    1,    2,     0,    3,    4,    5,     4,    5}
Value         - {7.5. 2.9, 2.8, 2.7, 6.8, 5.7, 3.8, 2.4, 6.2, 3.2, 9.7, 2.3, 5.8, 5.0, 6.6, 8.1}

Redundant Redundant



Compression Techniques: Compressed Sparse 
Row (CSR)



Compression Techniques: Blocked 
Compressed Sparse Row (BCSR)



CSX Format: Basics

ØDecomposes matrix into units
ØUnits can be substructure units 

encoding blocks, vertical 
components, diagonals etc

ØCan also be delta units
ØDelta units store the distance from

the previous column to the next
column. This allows less bytes to be
used per index element



CSX Format: The Layout 

ØStores elements of each 
substructure in a value array

ØStores substructures in row-
wise order

ØFor matrix on right:
ØHoriz(1), anti-diag(1), bcol(4,2), 

vert(1), diag(2), bcol(4,2) and 
bcol(3,2)



CSX Format: The Unit

ØA unit comprises of a head and a body
Ønr: Start of new row
ØRjmp and ujmp: Tells us if we need to skip rows
ØID: type of substructure
ØSize : number of elements in the body
Øucol: initial column of the unit
ØBody: Only present in delta unit otherwise substructure 

values



CSX Format: Detecting Substructures

ØTo Facilitate detection, CSX uses an internal COO format with (i, j, e)
tuples lexicographically sorted on the (i, j) where e is either a
substructure or a single element.
ØIn the case of a substructure, (i, j) is the coordinate of the first element in that

substructure
ØCSX also stores row pointers for fast row access



CSX Format: Detecting Substructures

Applies Run-Length encoding
ØComputes delta distances of 

column indices and assembles 
groups called runs from the 
same distance values

ØEach run is identified by a 
common delta value and its 
length



CSX Format: Detecting Non-horizontal 
Substructures

ØTransform coordinates to 
desired iteration order sort 
lexicographically and use 
algorithm 1

Ør, c – block row size and 
block column size



CSX Format: Encoding Substructures

ØFor each substructure type
ØTransform the matrix to the corresponding iteration order
ØScan the result and collect statistics for the examined substructure type
ØFilter out substructures created that encode less than 5% of total non-zeros
ØSelect most appropriate type based on some criterion
ØRepeat until no more substructure types can be selected



CSX Format: Encoding Substructures



CSX Format: Criterion for Substructure 
Selection

ØSelect substructures based on a rough estimate of the reduction over 
original CSR.

ØScolind := Size of colind structure from normal CSR 
ØSctl := Size of ctl structure from CSX (depends on number of units)



CSX Format: Takeaways

ØCSX can automatically detect a variety of substructures in a matrix 
removing the need for users to carefully choose format types

ØCSX format naturally lends itself to autotuning



Performance: Preprocessing of CSX

ØInitially 500 serial SpMV operations if entire matrix is processed
ØCan get down to ~100 serial SpMV operations through sampling and 

other techniques



Performance: Operational Intensity

ØIntensity for general SpMV:  ! = #$% + '!
ØFlops: 2)*+ + 3)-
ØMemory: Index information is 4 bytes while values are 8 bytes
ØMx is the memory of vector x: 8)- bytes since read only
ØMy is the memory of vector y: 16)- bytes since read and write
ØMCSR = 12)*+ + 4)-
ØMCSX = 2345 + 8)*6
ØIF = 7589:

;<=;>=;?
where F is the format type and I is the intensity



Performance: Operational Intensity

Let Mx,y = !" +!$ so we have the 
following operational intensities:

For common case NNZ >> Nr:
Ø ICSR = 0.167
Ø ICSX =  0.25

CSX has higher intensity which 
reduces pressure on memory 
subsystem.



Performance: Compression vs CSR



Performance: Benchmark Terminology

Ønoxmiss - eliminates irregular accesses by setting the column indices
of all nonzero elements to 0. Indicative of the performance loss due
to excessive cache misses when accessing right-hand side vector.

Ønoxmiss-balanced - performance of the noxmiss benchmark using the 
average execution time of all threads. Designates the performance 
loss due to both excessive cache misses and workload imbalance



Performance: Single NUMA Node



Performance: Single NUMA Node

Matrices fit in last level cache for power 8 machine (80MB)



Performance: Overall



Conclusion

ØSparseX provides an easy to use library that automatically autotunes
to matrix structure due to the CSX format

ØAchieves speed ups of 1.2 to 2x on a variety of matrices


