SparseX: A Library for High-Performance Sparse Matrix-Vector Multiplication on Multicore Platforms

Athena Elafrou, Vasileios Karakasis, Theodoros Gkountouvas, Kornilios Kourtis, Georgios Goumas and Nectarios Koziris

Presenter: Rawn Henry

April 25 2019

Overview

- **≻**Motivation
- ➤ Related Work
- **➤**Compression Techniques
- ➤ The CSX Format
- ➤ Performance of SparseX
- **≻**Conclusion

Motivation: Why Compress?

- The dimensions of sparse matrices are usually a lot larger than the number of non-zeros.
 - ➤ That is for an N x M matrix, we usually have that NNZ << N x M
 - ➤ A lot of work doing computation can be saved

Motivation: Use Cases

- \triangleright Building block of iterative methods to solve large, sparse linear systems (Ax = b)
- \triangleright Approximation of Eigen values and Eigen vectors (Ax = λ x)
- Applications in Economic Modelling, Physics, Medicine, etc...

Motivation: Difficulty with Compression

- ➤ SpMV hard to optimize due to:
 - **≻**Low Operational Intensity
 - ➤ Irregular accesses into input vector
 - ➤ Indirect memory accesses due to sparse structure
 - For very short rows loop overhead can be high
 - ➤ Large amount of storage formats

Related Work

- ➤ Implement SpMV for several formats
 - □ Drawbacks
 - > Complicates library since we need a lot of kernels that do the same thing
 - ➤ Requires users to have deep understanding of the problem to pick the right format for their specific domain
- >Auto tune kernels based on architecture and application parameters
 - Architecture parameters: cache and registers size, vectorization capabilities
 - >Application parameters: symmetry, sparsity pattern
 - **□** Drawbacks
 - > Tuning still limited to the formats that the library supports
 - > Incurs high overhead making tuning impractical for online use.

SparseX

- ➤ Key idea is the use of a custom matrix format, namely the Compressed Sparse eXtended format (CSX)
 - ➤ Designed to be auto tuned
 - ➤ Can detect a large number of features in a matrix
- ➤ Allows SparseX to export a simple BLAS-like interface while maintaining performance of special matrix formats

Compression Techniques: Coordinate Format (COO)

Compression Techniques: Compressed Sparse Row (CSR)

$$A = \begin{pmatrix} 7.5 & 2.9 & 2.8 & 2.7 & 0 & 0 \\ 6.8 & 5.7 & 3.8 & 0 & 0 & 0 \\ 2.4 & 6.2 & 3.2 & 0 & 0 & 0 \\ 9.7 & 0 & 0 & 2.3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5.8 & 5.0 \\ 0 & 0 & 0 & 0 & 6.6 & 8.1 \end{pmatrix}$$

Compression Techniques: Blocked Compressed Sparse Row (BCSR)

$$A = \begin{array}{|c|c|c|c|c|c|c|c|} \hline (7.5 & 2.9 & 2.8 & 2.7 & 0 & 0 \\ \hline (6.8 & 5.7) & 3.8 & \mathbf{0} & 0 & 0 \\ \hline (2.4 & 6.2 & 3.2 & \mathbf{0} & 0 & 0 \\ \hline (9.7 & \mathbf{0}) & 0 & 2.3 & 0 & 0 \\ \hline (0 & 0 & 0 & 0 & 5.8 & 5.0 \\ 0 & 0 & 0 & 0 & 6.6 & 8.1 \\ \hline \end{array} \right) \\ r = 2, c = 2$$

browptr:

bcolind:

bvalues: $(7.5 \ 2.9 \ 6.8 \ 5.7)(2.8 \ 2.7 \ 3.8 \ 0)(2.4 \ 6.2 \ 9.7 \ 0)(3.2 \ 0 \ 0 \ 2.3)(5.8 \ 5.0 \ 6.6 \ 8.1)$

CSX Format: Basics

- ➤ Decomposes matrix into units
 - ➤ Units can be substructure units encoding blocks, vertical components, diagonals etc
 - >Can also be delta units
 - ➤ Delta units store the distance from the previous column to the next column. This allows less bytes to be used per index element

CSX Format: The Layout

- ➤ Stores elements of each substructure in a value array
- ➤ Stores substructures in rowwise order
- ➤ For matrix on right:
 - ➤ Horiz(1), anti-diag(1), bcol(4,2), vert(1), diag(2), bcol(4,2) and bcol(3,2)

CSX Format: The Unit

- >A unit comprises of a head and a body
 - >nr: Start of new row
 - > Rjmp and ujmp: Tells us if we need to skip rows
 - ➤ID: type of substructure
 - ➤ Size : number of elements in the body
 - >ucol: initial column of the unit
 - ➤ Body: Only present in delta unit otherwise substructure values

CSX Format: Detecting Substructures

- To Facilitate detection, CSX uses an internal COO format with (i, j, e) tuples lexicographically sorted on the (i, j) where e is either a substructure or a single element.
 - ➤In the case of a substructure, (i, j) is the coordinate of the first element in that substructure
- >CSX also stores row pointers for fast row access

CSX Format: Detecting Substructures

Applies Run-Length encoding

- Computes delta distances of column indices and assembles groups called runs from the same distance values
- Each run is identified by a common delta value and its length

```
Algorithm 1. Substructure detection in CSX.
 1: procedure DETECTSUBSTR(matrix::in, stats::inout)
     matrix: CSX's internal repr., lexicographically sorted
     stats: substructure statistics
        colind \leftarrow \emptyset
                                      \triangleright Column\ indices\ to\ encode
        for all rows in matrix do
            for all generic elements e(i, j, v) in row do
               if e is not a substructure then
  6:
                   colind \leftarrow colind \cup e.j
                   continue
 8:
               enc \leftarrow \text{RLENCODE}(colind)
               UPDATESTATS(stats, enc) \triangleright Update statistics
 9:
                                                   for this encoding
10:
             colind \leftarrow \emptyset
11:
          enc \leftarrow \text{RLENCODE}(colind)
12:
          UPDATESTATS(stats, enc) \triangleright Update statistics for
                                               this encoding
13:
          colind \leftarrow \emptyset
```

CSX Format: Detecting Non-horizontal Substructures

- Transform coordinates to desired iteration order sort lexicographically and use algorithm 1
- ➤ r, c block row size and block column size

TABLE I

THE COORDINATE TRANSFORMATIONS APPLIED BY CSX ON THE MATRIX ELEMENTS FOR ENABLING THE DETECTION OF NON-HORIZONTAL SUBSTRUCTURES (ONE-BASED INDEXING ASSUMED).

Substructure	Transformation
Horizontal	(i',j') = (i,j)
Vertical	(i',j')=(j,i)
Diagonal	$(i',j') = (N+j-i,\min(i,j))$
Anti-diagonal	$(i',j') = \begin{cases} (i+j-1,i), & i+j-1 \le N \\ (i+j-1,N+1-j), & i+j-1 > N \end{cases}$ $(i',j') = (\lfloor \frac{i-1}{r} \rfloor + 1, \operatorname{mod}(i-1,r) + r(j-1) + 1)$ $(i',j') = (\lfloor \frac{j-1}{c} \rfloor + 1, c(i-1) + \operatorname{mod}(j-1,c))$
$Block \ ({\sf row \ aligned})$	$(i', j') = (\lfloor \frac{i-1}{r} \rfloor + 1, \mod(i-1, r) + r(j-1) + 1)$
$Block \ ({\tt column \ aligned})$	$(i', j') = (\lfloor \frac{j-1}{c} \rfloor + 1, c(i-1) + \text{mod}(j-1, c))$

CSX Format: Encoding Substructures

- ➤ For each substructure type
 - >Transform the matrix to the corresponding iteration order
 - >Scan the result and collect statistics for the examined substructure type
 - Filter out substructures created that encode less than 5% of total non-zeros
 - ➤ Select most appropriate type based on some criterion
 - > Repeat until no more substructure types can be selected

CSX Format: Encoding Substructures

Algorithm 2. Detection, selection and encoding of the substructures in CSX.

```
1: procedure ENCODEMATRIX(matrix::inout)
    matrix: CSX's internal matrix in row-wise order
       repeat
 3:
          stats \leftarrow \emptyset
          for all available substructure types t do
              TRANSFORM(matrix, t)
              LEXSORT(matrix)
 6:
              DETECTSUBSTR(matrix, stats)
 8:
              TRANSFORM^{-1} (matrix, t)
 9:
          FILTERSTATS(stats) ▷ Filter out instantiations that
                         encode less than 5% of the non-zero
                         elements
10:
          s \leftarrow \text{SELECTTYPE}(stats)
          if s \neq NONE then
11:
12:
           TRANSFORM(matrix, s)
13:
           LEXSORT(matrix)
14:
           ENCODESUBSTR(matrix) ▷ Encode the selected
                                       substructure
     until s = NONE
15:
```

CSX Format: Criterion for Substructure Selection

- ➤ Select substructures based on a rough estimate of the reduction over original CSR.
- >S_{colind} := Size of colind structure from normal CSR
- $>S_{ctl}$:= Size of ctl structure from CSX (depends on number of units)

$$G = S_{colind} - S_{ctl}$$

$$= NNZ - (N_{units} + NNZ - NNZ_{enc})$$

$$= NNZ_{enc} - N_{units},$$
unencoded
$$= NNZ_{enc} - N_{units},$$

CSX Format: Takeaways

- ➤ CSX can automatically detect a variety of substructures in a matrix removing the need for users to carefully choose format types
- ➤ CSX format naturally lends itself to autotuning

Performance: Preprocessing of CSX

- ➤ Initially 500 serial SpMV operations if entire matrix is processed
- ➤ Can get down to ~100 serial SpMV operations through sampling and other techniques

Performance: Operational Intensity

- Intensity for general SpMV: $y = \alpha Ax + \beta y$
- \triangleright Flops: $2N_{Nz} + 3N_r$
- ➤ Memory: Index information is 4 bytes while values are 8 bytes
- \triangleright M_x is the memory of vector x: $8N_r$ bytes since read only
- $ightharpoonup M_v$ is the memory of vector y: $16N_r$ bytes since read and write
- > M_{CSR} = $12N_{Nz} + 4N_r$
- > M_{CSX} = $S_{ctl} + 8N_{NZ}$
- $ightarrow I_F = \frac{flops}{M_F + M_X + M_Y}$ where F is the format type and I is the intensity

Performance: Operational Intensity

Let $M_{x,y} = M_x + M_y$ so we have the following operational intensities:

$$\begin{split} I_{CSR} &= \frac{2 \cdot N_{nz} + 3 \cdot N_r}{M_{CSR} + M_{x,y}} = \frac{2 \cdot N_{nz} + 3 \cdot N_r}{4 \cdot N_r + 12 \cdot N_{nz} + 4 + 24 \cdot N_r} \\ &= \frac{1 + 1.5 \cdot \frac{N_r}{N_{nz}}}{6 + 14 \cdot \frac{N_r}{N_{nz}} + \frac{2}{N_{nz}}} \text{ (flops/bytes)}. \end{split}$$

$$I_{CSX} = \frac{2 \cdot N_{nz} + 3 \cdot N_r}{M_{CSX} + M_{x,y}} = \frac{2 \cdot N_{nz} + 3 \cdot N_r}{S_{ctl} + 8 \cdot N_{nz} + 24 \cdot N_r}$$
$$= \frac{1 + 1.5 \cdot \frac{N_r}{N_{nz}}}{4 + 0.5 \cdot \frac{S_{ctl}}{N_{nz}} + 12 \cdot \frac{N_r}{N_{nz}}}$$
(flops/bytes),

where S_{ctl} is $O(N_r)$.

-CSX

For common case $NNZ \gg N_r$:

$$ightharpoonup$$
 I_{CSR} = 0.167

$$I_{CSX} = 0.25$$

CSX has higher intensity which reduces pressure on memory subsystem.

Performance: Compression vs CSR

			S_{CSR}						
Matrix	N	NNZ	(MiB)	(MiB)	(MiB)	I_{CSR}	I_{CSX}	$I_{CSX_{sym}}$	Problem
xenon2	157,464	3,866,688	44.85	32.20	-	0.162	0.219	-	Materials
ASIC_680k	682,862	3,871,773	46.91	37.09	-	0.149	0.177	-	Circuit Sim.
torso3	259,156	4,429,042	51.67	35.35	-	0.160	0.222	-	Other
Chebyshev4	68,121	5,377,761	61.80	46.09	-	0.165	0.219	-	Structural
Hamrle3	1,447,360	5,514,242	68.63	54.51	-	0.144	0.167	-	Circuit Sim.
pre2	659,033	5,959,282	70.71	60.15	-	0.154	0.176	-	Circuit Sim.
cage13	445,315	7,479,343	87.29	69.19	-	0.159	0.196	-	Graph
atmosmodj	1,270,432	8,814,880	105.72	67.61	-	0.152	0.211	-	C.F.D.
ohne2	181,343	11,063,545	127.30	103.08	-	0.164	0.202	-	Semiconductor
TSOPF_RS_b2383	38,120	16,171,169	185.21	124.42	-	0.166	0.247	-	Power
Freescale1	3,428,755	18,920,347	229.61	199.21	-	0.149	0.165	-	Circuit Sim.
wikipedia-20051105	1,634,989	19,753,078	232.29	224.63	-	0.157	0.162	-	Directed Graph
rajat31	4,690,002	20,316,253	250.39	176.66	-	0.146	0.184	-	Circuit Sim.

Performance: Benchmark Terminology

- ➤ noxmiss eliminates irregular accesses by setting the column indices of all nonzero elements to 0. Indicative of the performance loss due to excessive cache misses when accessing right-hand side vector.
- ➤ noxmiss-balanced performance of the noxmiss benchmark using the average execution time of all threads. Designates the performance loss due to both excessive cache misses and workload imbalance

Performance: Single NUMA Node

Performance: Single NUMA Node

Matrices fit in last level cache for power 8 machine (80MB)

Performance: Overall

Conclusion

- SparseX provides an easy to use library that automatically autotunes to matrix structure due to the CSX format
- ➤ Achieves speed ups of 1.2 to 2x on a variety of matrices