
SparseX: A Library for High-Performance Sparse
Matrix-Vector Multiplication on Multicore

Platforms
Athena Elafrou, Vasileios Karakasis, Theodoros Gkountouvas, Kornilios

Kourtis, Georgios Goumas and Nectarios Koziris

Presenter: Rawn Henry
April 25 2019

Overview

ØMotivation
ØRelated Work
ØCompression Techniques
ØThe CSX Format
ØPerformance of SparseX
ØConclusion

Motivation: Why Compress?

Ø The dimensions of sparse
matrices are usually a lot larger
than the number of non-zeros.
ØThat is – for an N x M matrix, we

usually have that NNZ << N x M
ØA lot of work doing computation

can be saved

Motivation: Use Cases

ØBuilding block of iterative methods to solve large, sparse linear
systems (Ax = b)

ØApproximation of Eigen values and Eigen vectors (Ax = λx)
ØApplications in Economic Modelling, Physics, Medicine, etc…

Motivation: Difficulty with Compression

ØSpMV hard to optimize due to:
ØLow Operational Intensity
ØIrregular accesses into input vector
ØIndirect memory accesses due to sparse structure
ØFor very short rows loop overhead can be high
ØLarge amount of storage formats

Related Work

ØImplement SpMV for several formats
qDrawbacks

ØComplicates library since we need a lot of kernels that do the same thing
ØRequires users to have deep understanding of the problem to pick the right format for

their specific domain

ØAuto tune kernels based on architecture and application parameters
ØArchitecture parameters: cache and registers size, vectorization capabilities
ØApplication parameters: symmetry, sparsity pattern
qDrawbacks

ØTuning still limited to the formats that the library supports
Ø Incurs high overhead making tuning impractical for online use.

SparseX

Ø Key idea is the use of a custom matrix format, namely the
Compressed Sparse eXtended format (CSX)
ØDesigned to be auto tuned
ØCan detect a large number of features in a matrix

ØAllows SparseX to export a simple BLAS-like interface while
maintaining performance of special matrix formats

Compression Techniques: Coordinate Format
(COO)

Row index - {0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5}
Col index - {0, 1, 2, 3, 0, 1, 2, 0, 1, 2, 0, 3, 4, 5, 4, 5}
Value - {7.5. 2.9, 2.8, 2.7, 6.8, 5.7, 3.8, 2.4, 6.2, 3.2, 9.7, 2.3, 5.8, 5.0, 6.6, 8.1}

Redundant Redundant

Compression Techniques: Compressed Sparse
Row (CSR)

Compression Techniques: Blocked
Compressed Sparse Row (BCSR)

CSX Format: Basics

ØDecomposes matrix into units
ØUnits can be substructure units

encoding blocks, vertical
components, diagonals etc

ØCan also be delta units
ØDelta units store the distance from

the previous column to the next
column. This allows less bytes to be
used per index element

CSX Format: The Layout

ØStores elements of each
substructure in a value array

ØStores substructures in row-
wise order

ØFor matrix on right:
ØHoriz(1), anti-diag(1), bcol(4,2),

vert(1), diag(2), bcol(4,2) and
bcol(3,2)

CSX Format: The Unit

ØA unit comprises of a head and a body
Ønr: Start of new row
ØRjmp and ujmp: Tells us if we need to skip rows
ØID: type of substructure
ØSize : number of elements in the body
Øucol: initial column of the unit
ØBody: Only present in delta unit otherwise substructure

values

CSX Format: Detecting Substructures

ØTo Facilitate detection, CSX uses an internal COO format with (i, j, e)
tuples lexicographically sorted on the (i, j) where e is either a
substructure or a single element.
ØIn the case of a substructure, (i, j) is the coordinate of the first element in that

substructure
ØCSX also stores row pointers for fast row access

CSX Format: Detecting Substructures

Applies Run-Length encoding
ØComputes delta distances of

column indices and assembles
groups called runs from the
same distance values

ØEach run is identified by a
common delta value and its
length

CSX Format: Detecting Non-horizontal
Substructures

ØTransform coordinates to
desired iteration order sort
lexicographically and use
algorithm 1

Ør, c – block row size and
block column size

CSX Format: Encoding Substructures

ØFor each substructure type
ØTransform the matrix to the corresponding iteration order
ØScan the result and collect statistics for the examined substructure type
ØFilter out substructures created that encode less than 5% of total non-zeros
ØSelect most appropriate type based on some criterion
ØRepeat until no more substructure types can be selected

CSX Format: Encoding Substructures

CSX Format: Criterion for Substructure
Selection

ØSelect substructures based on a rough estimate of the reduction over
original CSR.

ØScolind := Size of colind structure from normal CSR
ØSctl := Size of ctl structure from CSX (depends on number of units)

CSX Format: Takeaways

ØCSX can automatically detect a variety of substructures in a matrix
removing the need for users to carefully choose format types

ØCSX format naturally lends itself to autotuning

Performance: Preprocessing of CSX

ØInitially 500 serial SpMV operations if entire matrix is processed
ØCan get down to ~100 serial SpMV operations through sampling and

other techniques

Performance: Operational Intensity

ØIntensity for general SpMV: ! = #$% + '!
ØFlops: 2)*+ + 3)-
ØMemory: Index information is 4 bytes while values are 8 bytes
ØMx is the memory of vector x: 8)- bytes since read only
ØMy is the memory of vector y: 16)- bytes since read and write
ØMCSR = 12)*+ + 4)-
ØMCSX = 2345 + 8)*6
ØIF = 7589:

;<=;>=;?
where F is the format type and I is the intensity

Performance: Operational Intensity

Let Mx,y = !" +!$ so we have the
following operational intensities:

For common case NNZ >> Nr:
Ø ICSR = 0.167
Ø ICSX = 0.25

CSX has higher intensity which
reduces pressure on memory
subsystem.

Performance: Compression vs CSR

Performance: Benchmark Terminology

Ønoxmiss - eliminates irregular accesses by setting the column indices
of all nonzero elements to 0. Indicative of the performance loss due
to excessive cache misses when accessing right-hand side vector.

Ønoxmiss-balanced - performance of the noxmiss benchmark using the
average execution time of all threads. Designates the performance
loss due to both excessive cache misses and workload imbalance

Performance: Single NUMA Node

Performance: Single NUMA Node

Matrices fit in last level cache for power 8 machine (80MB)

Performance: Overall

Conclusion

ØSparseX provides an easy to use library that automatically autotunes
to matrix structure due to the CSX format

ØAchieves speed ups of 1.2 to 2x on a variety of matrices

