
Analysis of
Work-Stealing Scheduler

Yan Gu
6.886 Algorithm Engineering

May 2, 2019

6-8
cores
Smartphones

64-100+
cores
High-end
servers

16-40
cores

PC/Workstation

2

50-100x increase in the last
15 years!

Shared-memory multicore
parallelism

A = 1 2 3 4 5 6 7 8

SUM(A):

3 7 11 15

10 26

36

Function SUM(A)
If |A| = 1 then return A(1)
In Parallel

a = SUM(first half of A)
b = SUM(second half of A)

return a + b

+ + + +

+ +

+

Cilk
OpenMP
X10
TBB
Habanero
Java fork-join

3

A = 1 2 3 4 5 6 7 8

SUM(A):

3 7 11 15

10 26

36

+ + + +

+ +

+

Span

4

¢Work (!): the number of operations (ideally
it should match the best sequential solution)

¢Span ("): the longest dependence in this
computation (ideally to be polylogarithmic)

Less overhead

Better scalability

Function QuickSort (A)
p ß random pivot
L ß Select (A, <p)
M ß Select (A, =p)
R ß Select (A, >p)
In parallel

QuickSort (L)
QuickSort (R)

Return L + M + R

Quicksort(1,100)

Partition

Quicksort(1,40) Quicksort(41,100)

Partition Partition

QS(1,15) QS(16,40) QS(71,100)QS(41,70)

parallel_for (int i=0; i<n; i++)
a[i] = f(a[i]);

How is your code actually executed on hardware?

Why analyzing work and span?

parallel_for (int i=0; i<n; i++)
a[i] = f(a[i]);

parallel_for (int i=0; i<n; i++)
a[i] = f(a[i]);

Treat the computation as a DAG

Function SUM(A)
If |A| = 1 then return A(1)
In Parallel

a = SUM(first half of A)
b = SUM(second half of A)

return a + b

Greedy scheduler

IDEA: Do as much as possible on every step.

P = 3

Greedy scheduler

IDEA: Do as much as possible on every step.

Either execute ! operations

P = 3IDEA: Do as much as possible on every step.

Either execute ! operations
Or reduce the span by 1

Greedy scheduler

" ≤ $
% + '

P = 3
Impractical:
• Assumes processors/threads

run in lockstep
• Big overhead in context

switching
• Different operations have very

different costs

Greedy scheduler

P = 3

Work-stealing scheduler

¢ Full details in 6.172: Performance Engineering of
Software Systems (Cilk implementation)

¢ If a processor spawns tasks at a FORK, it
continues execution with one of the spawned
subtasks, and push the other subtask to the front
its queue

¢ If a processor completes a task, it tries to pull a
task from the front of its own queue

¢ If a processor finishes all tasks in its own queue, it
randomly selects another processor, and steals a
task from the end of the victim queue (retry if failed)

P = 3

Work-stealing scheduler

P P P

P = 3

Work-stealing scheduler

P P P

parallel_for (int i=0; i<n; i++)
a[i] = f(a[i]);

P = 3

Overhead of work-stealing scheduler

P P P

Bound the number of steals (whp):

! "#

Overhead of work-stealing scheduler

Bound the number of steals (whp):

! "#
Running time (whp):

$ = & + ! "#
" = &

" + ! #
Cache reload:

! "#

Assumptions

Steals come asynchronously

Multiple steals can be made to the
same thread, and one wins
(adversarially)

A successful steal from thread A
would not block two consecutive
steals from another thread B

Proof outline

Consider one specific path

Left child: executed directly after
the previous node

Right child:
• Stolen by another thread
• Executed when the current

thread finishes the left side

Join node: executed when all
previous nodes are finished ! = # + % &'

& = #
& + % '

Proof outline

Consider one specific path

Consider the worst case:
• All nodes are right child
• All of them need to be stolen

We want to show that ! "# steals
are sufficient to steal # tasks whp

Challenge: steals happen asynchronously
• They can block each other
Best case: steals are attempted one after another
Each steal has 1/ # − 1 probability to steal one task

Chernoff bound: for % independent random variables in {0, 1},
let * be the sum, and + = E * , then for any 0 < . < 1,

Pr * ≥ 1 − . + ≤ 34
567
8

How many steals do we need?

How many steals do we need?

Best case: steals are attempted one after another
Each steal has 1/ # − 1 probability to steal one task
Let’s say we have 2 # − 1 & + ln 1/* steal attempts
Expected steals: + = 2 & + ln 1/*
If we have less than & steals, then - = + − & /+, and

./
012
3 = ./

2/4 /2 12
3 = ./

(2/4)1/2
3 < . 34/2 /3 = ./ 89 :/; = *

Pr > ≥ 1 − - + ≤ ./
012
3

The probability that we have at least & successful
steals from 2 # − 1 & + ln 1/* attempts is 1 − *

Worst case: ! − 1 steals are always attempted together
Probability that none of the steals touch the current
thread:

1 − 1
! − 1

$%&
< 1
(

How many steals do we need?

Worst case: ! − 1 steals are always attempted together
One task is stolen by probability at least 1 − 1/%
Let’s say we have 2%/ % − 1 ' + log 1/, rounds of steals
Expected steals: - = 2 ' + log 1/,
If we have less than ' steals, then / = - − ' /-, and

%0
123
4 = %0

(306 /3)23
4 = %0

(306)2/3
4 < % 4603 /4 = ,

How many steals do we need?

The probability that we have at least ' successful steals
from 2 ! − 1 % ' + ln 1/, / % − 1 attempts is 1 − ,

To get ! steals with probability 1 − $, we need
• Best case: 2 & − 1 ! + ln 1/$ steals
• Worst case: 2 & − 1 ! + ln 1/$ +/ + − 1 steals
We want to guarantee probability with 1 − 1/,-
In a DAG with depth !, there are in total ≤ 2/ paths
Let $ = 1/ 2/ ⋅ ,- , then ln 1/$ = 2 ln , + ! ln 2

How many steals do we need?

3 45 steals are sufficient for all possible paths whp

Overhead of work-stealing scheduler

The number of steals (whp):

! "#
Running time (whp):

$ = & + ! "#
" = &

" + ! #
Cache reload:

! "#

