Analysis of
Work-Stealing Scheduler

Yan Gu

6.886 Algorithm Engineering
May 2, 2019

Shared-memory multicore
parallelism

cores ||

High-end/ -
Am.o/\ N cores
50-100x increase in the last PC/Workstation
15 years!

N N & N
3 I4 11 15

SUM(A): 36

Function SUM(A)
If |A] =1 then return A(1)

In Parallel
a = SUM(first half of A)

b = SUM(second half of A)
returna + b

Cilk

OpenMP

X10

TBB
Habanero
Java fork-join

A= 1 2 3 4 5 6 7 8
N\ N AU N
10 26
\-l/)
SUM(A): 36

Work (W): the number of operations (ideally
it should match the best sequential solution) €SS overhead

Span (D): the longest dependence in this -
computation (ideally to be polylogarithmic) Better scalability

[QuicksoIt(1,100)] Function QuickSort (A)

Partition p € random pivot
L & Select (A, <p)
| Quicksort(1,40) | Quicksort(41,100)] M & Select (A, =p)

; . R & Select (A, >p)
Partition Partition In paraIIeI
s i) @) Gm s

ReturnL+ M + R
\/ \/
\/

parallel_for (int 1=0; i<n; i++)

a[i] = t(afi]);

How is your code actually executed on hardware?

Why analyzing work and span??

parallel_for (int i=0; i<n; i++)

a[i] = f(a[l]);

parallel_for (int i=0; i<n; i++)

a[i] = f(a[l]);

Treat the computation as a DAG

Function SUM(A)
If |A] =1 then return A(1)
In Parallel
a = SUM(first half of A)
b = SUM(second half of A)
returna + b

Greedy scheduler

IDEA: Do as much as possible on every step.

Greedy scheduler

IDEA: Do as much as possible on every step.

Either execute p operations

Greedy scheduler

IDEA: Do as much as possible on every step.

Either execute p operations
Or reduce the span by 1

T<W+D
P

Greedy scheduler

Impractical:

Assumes processors/threads
run in lockstep

Big overhead in context
switching

Different operations have very
different costs

Work-stealing scheduler

Full details in 6.172: Performance Engineering of
Software Systems (Cilk implementation)

If a processor spawns tasks at a FORK, it
continues execution with one of the spawned
subtasks, and push the other subtask to the front
its queue

If a processor completes a task, it tries to pull a
task from the front of its own queue

If a processor finishes all tasks in its own queue, it
randomly selects another processor, and steals a
task from the end of the victim queue (retry if failed)

Work-stealing scheduler

Work-stealing scheduler

@ @ ®

parallel_for (int i=0; i<n; i++)

a[i] = f(a[l]);

Overhead of work-stealing scheduler

Bound the number of steals (whp):

O(pD)

Overhead of work-stealing scheduler

Bound the number of steals (whp):
O(pD)

Running time (whp):
W+0mD) W
p=WHOWD) W0
p p
Cache reload:

O(pD)

Assumptions

Steals come asynchronously

Multiple steals can be made to the
same thread, and one wins
(adversarially)

A successful steal from thread A
would not block two consecutive
steals from another thread B

Proof outline

Consider one specific path

Left child: executed directly after
the previous node

Right child:
« Stolen by another thread
« Executed when the current
thread finishes the left side
Join node: executed whenall |, _ W + O(pD) W

previous nodes are finished) = +0(D)

Proof outline
Consider one specific path
Consider the worst case:

* All nodes are right child
* All of them need to be stolen

We want to show that O(pD) steals
are sufficient to steal D tasks whp

How many steals do we need?

Challenge: steals happen asynchronously
* They can block each other

Best case: steals are attempted one after another
Each steal has 1/(p — 1) probability to steal one task

Chernoff bound: for n independent random variables in {0, 1},

let X be the sum, and u = E[X], thenforany 0 < 6 < 1,
5%u
PriX=>(1—-6)u)<e 2

How many steals do we need?

Best case: steals are attempted one after another
Each steal has 1/(p — 1) probability to steal one task

Let’'s say we have 2(p — 1)(D + In(1/¢)) steal attempts

The probability that we have at least D successful
steals from 2(p — 1)(D + In(1/€)) attemptsis 1 — ¢

52 (—D) 2 —D 2
&2 (G 2/M) L e_(u)/ @D-/2 — g-In(1/E) _

_8%u
PriX=>(1-0)u) <e 2

How many steals do we need?

Worst case: p — 1 steals are always attempted together
Probability that none of the steals touch the current

thread:
1 \"1t 1
1 < —
(D — 1) e

How many steals do we need?

Worst case: p — 1 steals are always attempted together
One task is stolen by probability atleast 1 — 1/e

Let’'s say we have 2e/(e — 1)(D + log(1/€)) rounds of steals
Expected steals: u = 2(D + log(1/¢))

If we have less than D steals, then § = (u — D)/u, and

§%u ((u=D)/mw)*u (u—=D)*/u
e 2 = e_ 2 — e_ 2 < e(ZD_H)/Z = €

The probability that we have at least D successful steals
from 2(p — 1e(D +1In(1/€))/(e — 1) attemptsis 1 — €

How many steals do we need?

0 get D steals with probability 1 — €, we need

 Worst case: 2(p —1)(D +In(1/¢))e/(e — 1) steals
We want to guarantee probability with 1 — 1/n°

In a DAG with depth D, there are in total < 2P paths
Lete = 1/(2P - n°), thenIn(1/€) =clnn+ D1n 2

O(pD) steals are sufficient for all possible paths whp

Overhead of work-stealing scheduler

The number of steals (whp):
O(pD)

Running time (whp):
W+0mD) W
pWHOWD) W0
p p
Cache reload:

O(pD)

