
The Data Locality of Work
Stealing

Authors: Umut A. Acar, Guy E. Blelloch, Robert D. Blumofe
Presented by: Omar Obeya

Goal
1. Studying the effect of races on cache misses.
2. Studying the effect work steals have on cache

misses.
3. Designing and implementing efficient tools to

improve data locality while allowing work
stealing.

Model

● Represent Graphs using DAG
○ Series-Parallel Computation
○ Nested-Parallel Computation

● Simple Cache Replacement Policy
○ Deterministic
○ Cache replacement of a

cache line is only a function of
information after last access to line.

General
Computation
Example

General Computation Example

● Graph G4C
○ Root
○ L4C in red
○ R4C in blue
○ 4 merge nodes.

● Cache access
○ C cache access per

node.
○ Three groups of cache

■ Root
■ L4C
■ R4C + 4 nodes

General Computation Example

● Serial Execution
○ Root
○ L4C
○ R4C + merger nodes

● Cache misses
○ Root: C
○ L4C: C
○ R4C+ merger nodes: C
○ Total: 3C cache misses!

General Computation Example

● 2-Core Execution
○ Root (Core 0)
○ L4C (Core 0) and R4C

(Core 1)
○ Merger nodes (Core 0)

● Problem
○ R4C and merger nodes

are accessing same
data but executed by
different cores.

General Computation Example

● 2-Core Cache misses
○ Root: C
○ L4C: C
○ R4C: C
○ Merger nodes: 4C!!!
○ Total: 7C cache misses!
○ Overhead: 4C
○ Overhead is

independent from serial
cache misses.

Nested-Parallel
Computations

Race and Caches

● Races
○ Write-Write dependency: can cause the situation in the previous slide.
○ Write-Read dependency: a thread write will invalidate the other thread’s cache.

Drifted Nodes

● Drifted Node

A node that has a different
predecessor in the parallel
execution than the serial execution.

2

3 6

4 5 7 8

9

10 13

11 12 14 15

1

2

3 6

4 5 7 8

1

2 5

3 4 6 7

1

Drifted Nodes and cache

● Simple cache policy is
function of cache state
and cache access.

● If two execution start
at the same node and
perform same access,
then, they can differ by
at most C cache
misses.

2

3 6

4 5 7 8

9

10 13

11 12 14 15

1

2

3 6

4 5 7 8

1

2 5

3 4 6 7

1 X Y C Z

A B C D

M N O P

M N O P

Conclusions about parallel nested computation

● Total no. of cache misses overhead of a nested parallel algorithm is:
C * no. of drifted nodes.

● Total no. of drifted nodes is upper bounded by twice no. of steals.

● Expected No. of overhead cache misses on P processors is O(⌈m/s⌉ * C * P *
span), where m is the execution time of an instruction incurring a cache miss
and s is the steal time.

Iterative
Data-Parallel
Application

for(int step = 0; step < 2; step ++) {

 Parallel_for(int i =1; i < n-1; i++) {

 A[i] = (A[i-1] + A[i] + A[i+1])/3;

 }

}

0

0 1

0 0 1 1

1

1 0

1 1 0 0

0 1

1 0

0

1

Step 0

Step 1

Iterative Data-Parallel Application

Problem

Same data accessed by
different processors in
different steps.

0

0 1

0 0 1 1

1

1 0

1 1 0 0

0 1

1 0

0

1

Step 0

Step 1

Typical Work Stealing

Each process x maintains one deque (double-ended queue), such that:

● When x spawns a new independent task, it pushes it on the bottom of the deque.

● When x is done with its current task, it pops a task from the bottom of the deque.

● When a process is idle and has an empty deque, it steals a task from the top of
another random process deque.

Prioritized Work Stealing: Mailbox

Each process x maintains a mailbox besides its regular deque such that:

● x’s mailbox is a FIFO queue containing threads with affinity to x.

● When x creates a thread, it pushes it to both the deque and the mailbox.

● When x is idle, it tries to pop a task from the mailbox first, if it failed, it tries the
deque, if both fail, it tries stealing.

● Some mechanism is needed to maintain consistency between mailbox and
deque.

Ropes

Each rope:

● corresponds to a subarray.
● Has an affinity to a process.
● Puts corresponding thread in the correct mailbox.
● If the corresponding thread got stolen, the robe is updated with a new process.

Take away: Ropes increase the likelihood that same data are accessed by the same
process at each step in a dynamic fashion that does not harm load balance.

Implementations

● Static partitioning (static)
○ Bad load balancing.
○ Perfect locality.

● Work stealing (none)
○ Good load balancing.
○ Bad locality.

● Work stealing with ropes (lg)
○ Good load balancing
○ Good locality

● Work stealing with ropes
with initial placements (ip)

○ Worse load balancing
○ Better locality

80%
Improvement over work regular work stealing

Conclusion

● Contributions
○ Theoretical

■ Lower bound on worst case cache
overhead of general computation
series-parallel parallelism.

■ Upper bound on worst case cache
overhead of nested-parallel
computations

○ Practical
■ Ropes and mailboxes to improve data

locality of work stealing.

Thanks!
Questions?

