Write-efficient algorithms

6.886 Algorithm Engineering

Yan Gu, May 7, 2019

Classic Algorithms Research

…has focused on settings in which reads & writes to memory have equal cost

But what if they have very DIFFERENT costs? How would that impact Algorithm Design?

Intel® Optane™ DC Persistent Memory

BIG MEMORY BREAKTHROUGH FOR YOUR BIGGEST
DATA CHALLENGES

Intel® Optane™ DC persistent memory represents a groundbreaking technology innovation.¹²³⁴ Delivered with the nextgeneration 2nd Generation Intel® Xeon® Scalable processors, this workload optimized technology will help businesses extract more actionable insights from data – from cloud and databases, to in-memory analytics, and content delivery networks.

What Is Intel® Optane™ DC Persistent **Memory?**

Intel® Optane™ DC persistent memory is an innovative memory technology that delivers a unique combination of affordable

Emerging Memory Technologies

Motivation:

- DRAM is volatile
- DRAM energy cost is significant (~35% energy on data centers)
- DRAM density (bits/area) is limited

Emerging non-volatile main memory (NVRAMs) Technologies

- Persistent
- Significantly lower energy
- Higher density: 512GB per DIMM
- Read latencies approaching DRAM
- Random-access

3D XPoint

Another Key Property: Writes More Costly than Reads

In these emerging memory technologies, bits are stored as "states" of the given material

- **•** No energy to retain state
- ¢ Small energy to read state
	- Low current for short duration
- **Large energy to change state**

Writes incur higher energy costs, higher latency, and lower per-DIMM bandwidth (power envelope constraints)

Why does it matter?

¢ Consider the energy issue and assume a read costs 0.1 nJ and a write costs 10 nJ

Sorting algorithm 1: 100 n reads and 100 n writes on n elements We can sort <1 million entries per joule

Sorting algorithm 2: 200 n reads and $2n$ writes on n elements We can sort 25 million entries per joule

read cost write cost

Why does it matter?

¢Writes are significantly more costly than reads due to the cost to change the phases of materials

- higher latency, lower per-chip bandwidth, higher energy costs
- \bullet Higher energy \rightarrow Lower per-chip (memory) bandwidth
- \bullet Let the parameter $\omega > 1$ be the cost for **writes relative to reads**
	- Expected to be between 5 to 30

Evolution of the memory hierarchy

Evolution of the memory hierarchy

Evolution of the memory hierarchy

~200 ns from 512GB to 10TB level

Impacts on Real-World Computation

¢ Databases: the data that is kept in the external memory can now be on the **main memory**

¢ Graph processing: large social networks nowadays contain ~billion vertices and >100 billion edges

¢ Geometry applications: can handle more precise meshes that support better effects

Summary

• The new NVRAMs raise the challenge to design write-efficient algorithms

¢What we need:

- Modified cost models
- New algorithms
- New techniques to support efficient computation (cache policy, scheduling, etc.)
- Experiment

New Cost Models

Random-Access Machine (RAM)

¢ Unit cost for:

- Any instruction on $\Theta(\log n)$ -bit words
- Read/write a single memory location from an infinite memory

Read/write asymmetry in RAM?

 \bullet A single write cost ω instead of 1

But every instruction writes something…

(M, ω) -Asymmetric RAM (ARAM)

¢ Comprise of:

- a symmetric small-memory (cache) of size M , and
- an asymmetric large-memory (main memory) of unbounded size, and an integer write cost ω
- \bullet I/O cost Q: instructions on cache are free

(M, ω) -Asymmetric RAM (ARAM)

¢ Comprise of:

- a symmetric small-memory (cache) of size M , and
- an asymmetric large-memory (main memory) of unbounded size, and an integer write cost ω
- \bullet I/O cost Q: instructions on cache are free
- \bullet time T : instructions on cache take 1 unit of time

Asymmetric

Lower and Upper Bounds

Warm up: Asymmetric sorting

- \bullet Comparison sort on n elements
- **•** Read and comparison (without writes): $\Omega(n \log n)$
- **•** Write complexity: $\Omega(n)$
- **•** Question: how to sort *n* elements using $O(n \log n)$ instructions (reads) and $O(n)$ writes?
	- Swap-based sorting (i.e. quicksort, heap sort) does not seem to work
	- Mergesort requires strictly n writes for $\log n$ rounds
	- Selection sort uses linear write, but not work (read) efficiency

Warm up: Asymmetric sorting

- \bullet Comparison sort on n elements
- **•** Read complexity: $\Omega(n \log n)$
- \bullet Write complexity: $\Omega(n)$
- **•** The algorithm: inserting each key in random order into a binary search tree. In-order traversing the tree gives the sorted array. $(O(\log n)$ tree depth w.h.p.)

¢ Using balanced BSTs (e.g. AVL trees) gives a deterministic algorithm, but more careful analysis is required

Trivial upper bounds

Lower bounds

An example of a diamond DAG: Longest common sequence (LCS)

An example of Diamond DAG: Longest common sequence (LCS)

Computation DAG Rule

DAG Rule / pebbling game:

¢ To compute the value of a node, must have the values at all incoming nodes

High-level proof idea

- ¢ To show that for the computational DAG, there exists a partitioning of the DAG that I/O cost is lower bounded
- ¢ However, since read and write has different cost, previous techniques (e.g. [HK81]) cannot directly apply

Standard Observations on DAG

DAG (or DP table) has size n^2

 \bullet (Input size is only $2n$)

- **•** Building table explicitly \Rightarrow n^2 writes,
- ¢ but problem only inherently requires writing last value
- ¢ Compute some nodes in cache but don't write them out

Storage lower bound of subcomputation (diamond DAG rule, Cook and Sethi 1976): Solving an $k \times k$ sub-DAG requires k space to store intermediate value

For $k > M$, some values need to be written out

Storage lower bound of subcomputation (diamond DAG rule, Cook and Sethi 1976): Solving an $k \times k$ sub-DAG requires k space to store intermediate value

For $k > M$, some values need to be written out

Proof sketch of lower bound

- \bullet Computing any 2M \times 2M diamond requires M writes to the large-memory
	- \bullet 2M storage space, M from small-memory
- \bullet To finish computation, every 2M \times 2M sub-DAG needs to be computed, which leads to $\Omega\left(\frac{n^2}{M}\right)$ writes

A matching algorithm for the lower bound

- **Lower bound:** $\Theta\left(\frac{n^2}{M}\right)$ \overline{M} writes
- This lower bound is tight when breaking down into $\frac{M}{2}$ % × \overline{M} % sub-DAGs, and read & write-out the boundary only

I/O cost of Dijkstra's algorithm

- \bullet Compute an SSSP requires $O(m)$ DECREASE-KEYs and $O(n)$ EXTRACT-MINS in Dijkstra's algorithm
	- Classic Fibonacci heap: $O(\omega(m + n \log n))$
	- Balanced BST: $O(m(\omega + \log n))$
	- Restrict the Fibonacci heap into the small-memory with size M : no writes to the large-memory to maintain the heap, $O(n/M)$ rounds to finish, $O(n(\omega + m/M))$ I/O cost in total

Parallel Computational Model and Parallel Write-efficient Algorithms

A work-stealing scheduler can run a computation on p cores using time:

$$
O\left(\frac{n}{p} + \log n\right)
$$

The work-stealing scheduler is used in OpenMP, CilkPlus, Intel TBB, MS PPL, etc.

The nested-parallel model

Using a work-stealing scheduler:

Extra work for scheduling (#steals): $O(pD)$

Running time on p cores: W \boldsymbol{p} $+ O(D)$

W (work): total computation

D (depth): longest chain of all paths

The asymmetric nested-parallel model

Using a work-stealing scheduler:

Extra work for scheduling (#steals): $O(pD)$

Running time on p cores: W \overline{p} $+ O(\omega D)$

 W (work): total computation w/ expensive writes

 D (depth): longest unweighted chain of all paths

Results of parallel algorithms

- $k =$ output size
- δ = graph diameter
- $[†]$ = with high probability</sup>

 $§ = expected$

 \blacksquare

- ¢ A random permutation provides each "element" a unique random priority
- ¢ Incrementally inserting each element into the current configuration

- ¢ A random permutation provides each "element" a unique random priority
- ¢ Incrementally inserting each element into the current configuration

- ¢ A random permutation provides each "element" a unique random priority
- ¢ Incrementally inserting each element into the current configuration

- ¢ Unfortunately, good parallel incremental algorithms for some geometry problems were unknown
- ¢ We describe a framework that can analyze the parallelism of many incremental algorithms
- ¢ Then we design a uniform approach to get the writeefficient versions of these algorithms

Cache Policy

Cache policy: decide the block to evict when a cache miss occurs

¢ Least recent used (LRU) policy is the most practical implementation

Cache policy: decide the block to evict when a cache miss occurs

¢ Least recent used (LRU) policy is the most practical implementation

Challenge: LRU does not work well under the asymmetric setting

¢ Consider the sequence of repeated instructions: W(1), W(2), … , W(k-1), R(k), R(k+1), …, R(2k+1) o A clever cad Me wrothey costs nead 2 for this sequence with cache size k

Challenge: LRU does not work well under the asymmetric setting

- ¢ Consider the sequence of repeated instructions: W(1), W(2), … , W(k-1), R(k), R(k+1), …, R(2k+1) • A clever cache policy costs $k + 2$ for this sequence with cache size k
- The LRU policy costs $(k 1) \cdot \omega + k + 2$ with cache size $2k$

$$
\begin{array}{|c|c|c|c|c|c|c|c|}\n\hline\n2k+1 & 1 & 2 & 4 & 5 & \cdots & 2k-1 & 2k \\
\hline\n\end{array}
$$

Challenge: LRU does not work well under the asymmetric setting

- ¢ Consider the sequence of repeated instructions: W(1), W(2), … , W(k-1), R(k), R(k+1), …, R(2k+1) • A clever cache policy costs $k + 2$ for this sequence with cache size k
- The LRU policy costs $(k 1) \cdot \omega + k + 2$ with cache size $2k$

Classic LRU policy has an ω -time cost comparing to the clever policy!

Solution: The Asymmetric LRU policy

¢ The cache is separated into two equal-sized pools: a read pool and a write pool

Read Pool

Write Pool

Asymmetric Slow Memory

Solution: The Asymmetric LRU policy

• When reading a location, if the block is:

- in the read pool, the read is free
- in the write pool, the block will be copied to read pool
- in neither, the block is loaded from main memory
- \bullet The rules for write pool are symmetric, but cost $\omega + 1$ since the blocks are all dirty and need to be written back

P Uer **Write Pool 0 1 1** to the optimal policyThe new Asymmetric LRU policy is 3-competitive

In practice,

• The cache does not need to be explicitly separated into two pools physically

¢ Use the **dirty bit** to identify and check, and change the eviction rule accordingly

Experiment Analysis

Software simulator [ESA18]

¢ Can measure the number of reads and writes of an algorithm

Experimental results

• Weighted reads and writes assuming writes are 6x more expensive

Summary

Summary

¢ The new NVRAMs are available, which rise the challenge of read/write asymmetry in algorithm design

¢ New cost models to capture this asymmetry

¢ New upper and lower bounds on a number of fundamental problems

¢ New implementation with better performance

o This area is still new — there are many other problems worth investigating