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Classic Algorithms Research

…has focused on settings in which
reads & writes to memory have equal cost

But what if they have very DIFFERENT costs?
How would that impact Algorithm Design?





Emerging Memory Technologies

Motivation:
� DRAM is volatile

� DRAM energy cost is significant (~35% energy on data centers)

� DRAM density (bits/area) is limited

Emerging non-volatile main memory (NVRAMs) 
Technologies
� Persistent

� Significantly lower energy

� Higher density: 512GB per DIMM

� Read latencies approaching DRAM

� Random-access
3D XPoint



Another Key Property:
Writes More Costly than Reads

In these emerging memory technologies, bits are stored 
as “states” of the given material
¢ No energy to retain state
¢ Small energy to read state
- Low current for short duration

¢ Large energy to change state
- High current for long duration PCMWrites incur higher energy costs, higher 

latency, and lower per-DIMM bandwidth 
(power envelope constraints)



Sorting algorithm 1: 
100# reads and 100#
writes on # elements
We can sort <1 million 
entries per joule

¢Consider the energy issue and assume a read 
costs 0.1 nJ and a write costs 10 nJ

Why does it matter?

read cost write cost

Sorting algorithm 2: 
200# reads and 2# writes 
on # elements
We can sort 25 million 
entries per joule

read cost write cost



¢Writes are significantly more costly than reads 
due to the cost to change the phases of materials
� higher latency, lower per-chip bandwidth, higher  

energy costs

¢Higher energy à Lower per-chip (memory) 
bandwidth

¢ Let the parameter ! > # be the cost for       
writes relative to reads
� Expected to be between 5 to 30

Why does it matter?
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1.5ns 5ns 20ns 100ns 4ms
64KB 256KB 32MB 64GB TB

Evolution of the memory hierarchy

CPU
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DRAM

~200 ns
from 512GB to 10TB level

100ns
64GB

NVRAM



¢Databases: the data that is kept in the external 
memory can now be on the main memory

¢Graph processing: large social networks 
nowadays contain ~billion vertices and      
>100 billion edges

¢Geometry applications: can handle more 
precise meshes that support better effects

Impacts on Real-World Computation



¢The new NVRAMs raise the challenge to 
design write-efficient algorithms

¢What we need:
� Modified cost models 
� New algorithms
� New techniques to support efficient 

computation (cache policy, scheduling, etc.)

� Experiment

Summary



New Cost Models



¢ Unit cost for:
� Any instruction on Θ(log &)-bit words
� Read/write a single memory location from an infinite 

memory

Random-Access Machine (RAM)

CPU

Memory

1

1



¢ A single write cost ! instead of 1

But every instruction writes something…

Read/write asymmetry in RAM?

CPU write cost !

Memory

1

1 #



¢ Comprise of:
� a symmetric small-memory (cache) of size !, and 
� an asymmetric large-memory (main memory) of unbounded 

size, and an integer write cost "

¢ I/O cost #: instructions on cache are free

(%,')-Asymmetric RAM (ARAM)

CPU write cost "

Asymmetric
Large-Memory

Small-Memory

! words
0

1

'



¢ Comprise of:
� a symmetric small-memory (cache) of size !, and 
� an asymmetric large-memory (main memory) of unbounded 

size, and an integer write cost "

¢ I/O cost #: instructions on cache are free
¢ time $: instructions on cache take % unit of time

(',))-Asymmetric RAM (ARAM)

CPU write cost "

Asymmetric
Large-Memory

Small-Memory

! words

1

)
1
0



Lower and Upper Bounds



¢ Comparison sort on ! elements
¢ Read and comparison (without writes): Ω(! log !)
¢ Write complexity: Ω(!)

¢ Question: how to sort ! elements using ((! log !)
instructions (reads) and ((!) writes?
� Swap-based sorting (i.e. quicksort, heap sort) does 

not seem to work
� Mergesort requires strictly ! writes for log ! rounds
� Selection sort uses linear write, but not work (read) 

efficiency

Warm up: Asymmetric sorting



¢ Comparison sort on ! elements

¢ Read complexity: Ω(! log !)
¢ Write complexity: Ω(!)

¢ The algorithm: inserting each key in 
random order into a binary search 
tree. In-order traversing the tree gives 
the sorted array. (( log ! tree depth 
w.h.p.)

¢ Using balanced BSTs (e.g. AVL trees) 
gives a deterministic algorithm, but 
more careful analysis is required

Warm up: Asymmetric sorting
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Trivial upper bounds

Problem I/O cost !(#) and 
time %(#)

Reduction
ratio

Comparison sort Θ(# log # + +#) ,(log #)
Search tree, priority 
queue Θ(log # + +) ,(log #)

2D convex hull, 
triangulation ,(# log # + +#) ,(log #)
BFS, DFS, SCC,  
topological sort, 
block, bipartiteness, 
floodfill, biconnected
components

Θ(- + #+) ,(-/#)

/ = ,(1)



Lower bounds

Problem
I/O cost

Classic 
Algorithm Lower bound

Sorting network Θ "# log #log' Θ "# log #
log"'

Fast Fourier Transform Θ "# log #log' Θ "# log #
log"'

Diamond DAG (LCS, 
edit distance) Θ #("

' Θ #("
'



An example of a diamond DAG: 
Longest common sequence (LCS)

A C G T A T
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An example of Diamond DAG: 
Longest common sequence (LCS)

1 1 1 1 1 1

1 1 1 2 2 2

1 2 2 2 2 2

1 2 3 3 3 3

1 2 3 3 4 4
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Computation DAG Rule

DAG Rule / pebbling game:
¢ To compute the value of a node, must have the values 

at all incoming nodes



¢ To show that for the computational DAG, there exists a 
partitioning of the DAG that I/O cost is lower bounded

¢ However, since read and write has different cost, 
previous techniques (e.g. [HK81]) cannot directly 
apply

High-level proof idea



Standard Observations on DAG

A C G T A T

A

T

C

G

A

T

DAG (or DP table) has size !2
¢ (Input size is only 2!)
¢ Building table explicitly ⇒ !2 writes,
¢ but problem only inherently requires 

writing last value

¢ Compute some nodes in cache but 
don’t write them out



Storage lower bound of subcomputation
(diamond DAG rule, Cook and Sethi 1976): 
Solving an !×! sub-DAG requires ! space to 
store intermediate value

For ! > $, some values need to be written out



Storage lower bound of subcomputation
(diamond DAG rule, Cook and Sethi 1976): 
Solving an !×! sub-DAG requires ! space to 
store intermediate value

!

For ! > $, some values need to be written out



¢ Computing any 2"×2" diamond requires " writes to the 
large-memory
� 2" storage space, " from small-memory

¢ To finish computation, every 2"×2" sub-DAG needs to 
be computed, which leads to Ω %&

' writes 

Proof sketch of lower bound

2"
Θ )*

"* ⋅ Ω(") = Ω )*
"

#sub-problem #write 



¢ Lower bound: Θ "#
$ writes 

¢ This lower bound is tight when breaking down into $% ×
$
%

sub-DAGs, and read & write-out the boundary only

A matching algorithm for the lower bound

'/2
2 ⋅ +
'/2 ⋅ + = - +%

'

#row/column #read/write 



Upper bounds on graph algorithms

Problem
I/O cost !(#,%)

Classic algorithms New algorithms

Single-source 
shortest-path ' ( % + # log #

'(

)

min(

)

# ( +%/1 ,
( % + # log # ,
%(( + log #)

Minimum
spanning tree ' %( '(min(%(,

% min(log # , #/1) + (#))



¢ Compute an SSSP requires ! " DECREASE-KEYs and 
! # EXTRACT-MINs in Dijkstra’s algorithm
� Classic Fibonacci heap: ! $ " + # log #
� Balanced BST: ! " $ + log #
� Restrict the Fibonacci heap into the small-memory with size 
): no writes to the large-memory to maintain the heap, 
! #/) rounds to finish, ! # $ +"/) I/O cost in total

Fibonacci Heap

I/O cost of Dijkstra’s algorithm

small-memory

large-memory



Parallel Computational Model 
and 

Parallel Write-efficient Algorithms



A =     1     2     3     4     5     6     7     8

Sum(A):

3            7           11          15

10                        26

36

+

Function SUM(A)
If  |A| = 1  then return  A(1)
In Parallel

a = SUM(first half of A)
b = SUM(second half of A)

return a + b

+ + +

+ +

+



A =     1     2     3     4     5     6     7     8

Sum(A):

3            7           11          15

10                        26

36

+

A work-stealing scheduler can 
run a computation on ! cores 
using time:

" #
! + log #

+ + +

+ +

+

The work-stealing scheduler 
is used in OpenMP, CilkPlus, 
Intel TBB, MS PPL, etc.



! (work): total computation

" (depth): longest chain of 
all paths

The nested-parallel model

Using a work-stealing 
scheduler:

Extra work for 
scheduling (#steals):

# $"
Running time on $ cores:

!
$ + # "



Using a work-stealing 
scheduler:

Extra work for 
scheduling (#steals):

! "#
Running time on " cores:

$
" + ! &#$ (work): total computation 

w/ expensive writes

# (depth): longest unweighted
chain of all paths

The asymmetric nested-parallel model



Results of parallel algorithms

Problem Work (!) Depth (") Reduction of writes

Reduce Θ $ + & Θ log $ Θ(log $)
Ordered filter Θ $ + &, ↟ . log $ ↟ Θ(log $)
Comparison sort Θ $ log $ + $& ↟ . log $ ↟ Θ(log $)
List and tree 
contraction Θ $ . & log $ ↟ Θ(&)

Minimum 
spanning tree

.(
)

/ $ 0
+ &$ log(min(0/$, &)) . polylog $ ↟ 0/($ ⋅

log(min(0/$, &)))
2D convex hull . $ log , + ω$ log log , § . log; $ ↟ output-sensitive

BFS tree Θ &$ +0 § Θ < log $ ↟ . 0/$

, = output size
< = graph diameter
↟ = with high probability
§ = expected



Sequential upper bounds

Problem I/O cost !(#) and 
work %(#)

Reduction
ratio

Comparison sort Θ(# log # + +#) ,(log #)
Search tree, priority 
queue Θ(log # + +) ,(log #)

2D convex hull, 
triangulation ,(# log # + +#) ,(log #)
BFS, DFS, SCC,  
topological sort, 
block, bipartiteness, 
floodfill, biconnected
components

Θ(- + #+) ,(-/#)

/ = ,(1)



¢ A random permutation provides each “element” a 
unique random priority

¢ Incrementally inserting each element into the current 
configuration

Randomized Incremental Algorithms
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¢ A random permutation provides each “element” a 
unique random priority

¢ Incrementally inserting each element into the current 
configuration

Randomized Incremental Algorithms



¢ Unfortunately, good parallel incremental algorithms for 
some geometry problems were unknown

¢ We describe a framework that can analyze the 
parallelism of many incremental algorithms

¢ Then we design a uniform approach to get the write-
efficient versions of these algorithms

Randomized Incremental Algorithms

Problem Work
Comparison sort, convex hull, 
Delaunay triangulation, !-d tree, 
interval tree, priority search tree

Θ # log # + (#

!-d linear programming, 
minimum enclosing disk Θ # + (#)



Cache Policy



¢Least recent used (LRU) policy is the most 
practical implementation

Cache policy: decide the block to evict 
when a cache miss occurs

Cache Main Memory

1

0/1



¢Least recent used (LRU) policy is the most 
practical implementation

Cache policy: decide the block to evict 
when a cache miss occurs

Cache Main Memory

1

!



¢Consider the sequence of repeated instructions:
W(1), W(2), … , W(k-1), R(k), R(k+1), …, R(2k+1)

¢A clever cache policy costs ! + 2 for this 
sequence with cache size !

Challenge: LRU does not work well 
under the asymmetric setting

1 2 3 4 5 ⋯ k-1 k+1kk+2

W: write       R: read



¢Consider the sequence of repeated instructions:
W(1), W(2), … , W(k-1), R(k), R(k+1), …, R(2k+1)

¢A clever cache policy costs ! + 2 for this 
sequence with cache size !

¢The LRU policy costs ! − 1 ⋅ ' + ! + 2 with 
cache size 2!

Challenge: LRU does not work well 
under the asymmetric setting

1 2 3 4 5 ⋯ 2k-1 2k2k+1 1 2



¢Consider the sequence of repeated instructions:

W(1), W(2), … , W(k-1), R(k), R(k+1), …, R(2k+1)

¢A clever cache policy costs ! + 2 for this 
sequence with cache size !

¢The LRU policy costs ! − 1 ⋅ ' + ! + 2 with 
cache size 2!

Classic LRU policy has an '-time cost   
comparing to the clever policy! 

Challenge: LRU does not work well 
under the asymmetric setting



¢ The cache is separated into two equal-sized pools: a 
read pool and a write pool

Solution: The Asymmetric LRU policy

Read Pool

CPU

Write Pool

Asymmetric
Slow Memory



¢ When reading a location, if the block is:
� in the read pool, the read is free
� in the write pool, the block will be copied to read pool
� in neither, the block is loaded from main memory

¢ The rules for write pool are symmetric, but cost ! + 1
since the blocks are all dirty and need to be written back

Solution: The Asymmetric LRU policy

Read Pool

CPU

Write Pool

Asymmetric
Slow Memory

0 1
1

The new Asymmetric LRU policy is 3-competitive 
to the optimal policy



In practice,

¢The cache does not need to be explicitly 
separated into two pools physically

¢Use the dirty bit to identify and check, and 
change the eviction rule accordingly

Read Pool

Write Pool

dirty bit, either 0 or 1



Experiment Analysis



¢ Can measure the number of reads and writes of an 
algorithm

Software simulator [ESA18]



Experimental results
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¢ Weighted reads and writes assuming writes are 6x more 
expensive
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Summary



¢The new NVRAMs are available, which rise the 
challenge of read/write asymmetry in algorithm 
design

¢New cost models to capture this asymmetry

¢New upper and lower bounds on a number of 
fundamental problems

¢New implementation with better performance

¢This area is still new — there are many other 
problems worth investigating

Summary


