Write-efficient algorithms

6.886 Algorithm Engineering

Yan Gu, May 7, 2019

Classic Algorithms Research

...has focused on settings in which reads & writes to memory have equal cost

But what if they have very DIFFERENT costs? How would that impact Algorithm Design? Intel® Optane™ DC Persistent Memory

BIG MEMORY BREAKTHROUGH FOR YOUR BIGGEST Data challenges

Intel® Optane™ DC persistent memory represents a groundbreaking technology innovation.^{1 2 3 4} Delivered with the nextgeneration 2nd Generation Intel® Xeon® Scalable processors, this workload optimized technology will help businesses extract more actionable insights from data – from cloud and databases, to in-memory analytics, and content delivery networks.

What Is Intel[®] Optane[™] DC Persistent Memory?

Intel® Optane[™] DC persistent memory is an innovative memory technology that delivers a unique combination of affordable

Emerging Memory Technologies

Motivation:

- DRAM is volatile
- DRAM energy cost is significant (~35% energy on data centers)
- DRAM density (bits/area) is limited

Emerging non-volatile main memory (NVRAMs) Technologies

- Persistent
- Significantly lower energy
- Higher density: 512GB per DIMM
- Read latencies approaching DRAM
- Random-access

3D XPoint

Another Key Property: Writes More Costly than Reads

In these emerging memory technologies, bits are stored as "states" of the given material

- No energy to retain state
- Small energy to read state
 - Low current for short duration
- Large energy to change state

Writes incur higher energy costs, higher latency, and lower per-DIMM bandwidth (power envelope constraints)

Why does it matter?

 Consider the energy issue and assume a read costs 0.1 nJ and a write costs 10 nJ

Sorting algorithm 1: 100n reads and 100nwrites on n elements We can sort <1 million entries per joule

Sorting algorithm 2: 200n reads and 2n writes on *n* elements We can sort 25 million entries per joule

read cost write cost

Why does it matter?

• Writes are significantly more costly than reads due to the cost to change the phases of materials

- higher latency, lower per-chip bandwidth, higher energy costs
- o Higher energy → Lower per-chip (memory) bandwidth
- Let the parameter $\omega > 1$ be the cost for writes relative to reads
 - Expected to be between 5 to 30

Evolution of the memory hierarchy

Evolution of the memory hierarchy

Evolution of the memory hierarchy

~200 ns from 512GB to 10TB level

Impacts on Real-World Computation

 Databases: the data that is kept in the external memory can now be on the main memory

 Graph processing: large social networks nowadays contain ~billion vertices and >100 billion edges

 Geometry applications: can handle more precise meshes that support better effects

Summary

 The new NVRAMs raise the challenge to design write-efficient algorithms

• What we need:

- Modified cost models
- New algorithms
- New techniques to support efficient computation (cache policy, scheduling, etc.)
- Experiment

New Cost Models

Random-Access Machine (RAM)

• Unit cost for:

- Any instruction on $\Theta(\log n)$ -bit words
- Read/write a single memory location from an infinite memory

Read/write asymmetry in RAM?

• A single write cost ω instead of 1

But every instruction writes something...

(M, ω) -Asymmetric RAM (ARAM)

• Comprise of:

- a symmetric small-memory (cache) of size *M*, and
- an asymmetric large-memory (main memory) of unbounded size, and an integer write cost ω
- I/O cost *Q*: instructions on cache are free

(M, ω) -Asymmetric RAM (ARAM)

• Comprise of:

- a symmetric small-memory (cache) of size *M*, and
- an asymmetric large-memory (main memory) of unbounded size, and an integer write cost ω
- I/O cost *Q*: instructions on cache are free
- time *T*: instructions on cache take 1 unit of time

Asymmetric

Lower and Upper Bounds

Warm up: Asymmetric sorting

- Comparison sort on n elements
- Read and comparison (without writes): $\Omega(n \log n)$
- Write complexity: $\Omega(n)$
- Question: how to sort n elements using $O(n \log n)$ instructions (reads) and O(n) writes?
 - Swap-based sorting (i.e. quicksort, heap sort) does not seem to work
 - Mergesort requires strictly n writes for $\log n$ rounds
 - Selection sort uses linear write, but not work (read) efficiency

Warm up: Asymmetric sorting

- Comparison sort on n elements
- Read complexity: $\Omega(n \log n)$
- Write complexity: $\Omega(n)$
- The algorithm: inserting each key in random order into a binary search tree. In-order traversing the tree gives the sorted array. ($O(\log n)$ tree depth w.h.p.)

 Using balanced BSTs (e.g. AVL trees) gives a deterministic algorithm, but more careful analysis is required

Trivial upper bounds

Problem	I/O cost $Q(n)$ and time $T(n)$	Reduction ratio	
Comparison sort	$\Theta(n\log n + \omega n)$	$O(\log n)$	
Search tree, priority queue	$\Theta(\log n + \omega)$	$O(\log n)$	
2D convex hull, triangulation	$O(n\log n + \omega n)$	$O(\log n)$	
BFS, DFS, SCC, topological sort, block, bipartiteness, floodfill, biconnected components	$\Theta(m + n\omega)$	0(m/n)	

Lower bounds

	I/O cost			
Problem	Classic Algorithm	Lower bound		
Sorting network	$\Theta\left(\omega n \frac{\log n}{\log M}\right)$	$\Theta\left(\omega n \frac{\log n}{\log \omega M}\right)$		
Fast Fourier Transform	$\Theta\left(\omega n \frac{\log n}{\log M}\right)$	$\Theta\left(\omega n \frac{\log n}{\log \omega M}\right)$		
Diamond DAG (LCS, edit distance)	$\Theta\left(\frac{n^2\omega}{M}\right)$	$\Theta\left(\frac{n^2\omega}{M}\right)$		

An example of a diamond DAG: Longest common sequence (LCS)

An example of Diamond DAG: Longest common sequence (LCS)

Computation DAG Rule

DAG Rule / pebbling game:

 To compute the value of a node, must have the values at all incoming nodes

High-level proof idea

- To show that for the computational DAG, there exists a partitioning of the DAG that I/O cost is lower bounded
- However, since read and write has different cost, previous techniques (e.g. [HK81]) cannot directly apply

Standard Observations on DAG

DAG (or DP table) has size n^2

o (Input size is only 2n)

- Building table explicitly $\Rightarrow n^2$ writes,
- but problem only inherently requires writing last value
- Compute some nodes in cache but don't write them out

Storage lower bound of subcomputation (diamond DAG rule, Cook and Sethi 1976): Solving an $k \times k$ sub-DAG requires k space to store intermediate value

For k > M, some values need to be written out

Storage lower bound of subcomputation (diamond DAG rule, Cook and Sethi 1976): Solving an $k \times k$ sub-DAG requires k space to store intermediate value

For k > M, some values need to be written out

Proof sketch of lower bound

- Computing any 2*M*×2*M* diamond requires *M* writes to the large-memory
 - 2*M* storage space, *M* from small-memory
- To finish computation, every $2M \times 2M$ sub-DAG needs to be computed, which leads to $\Omega\left(\frac{n^2}{M}\right)$ writes

A matching algorithm for the lower bound

• Lower bound: $\Theta\left(\frac{n^2}{M}\right)$ writes

• This lower bound is tight when breaking down into $\frac{M}{2} \times \frac{M}{2}$ sub-DAGs, and read & write-out the boundary only

Upper bo	ounds on grap	n al	gorithms
$I/O \operatorname{cost} Q(n,m)$			
Problem	Classic algorithms		New algorithms
Single-source shortest-path	$O(\omega(m+n\log n))$	C a n	$D(\min(n(\omega + m/M), \omega(m + n \log n), \omega(m + n \log n)))$
Minimum spanning tree	0(mω)	0(n m m	$\min(m\omega, \min(\log n, n/M) + \omega n))$

I/O cost of Dijkstra's algorithm

- Compute an SSSP requires O(m) DECREASE-KEYs and O(n) EXTRACT-MINS in Dijkstra's algorithm
 - Classic Fibonacci heap: $O(\omega(m + n \log n))$
 - Balanced BST: $O(m(\omega + \log n))$
 - Restrict the Fibonacci heap into the small-memory with size M: no writes to the large-memory to maintain the heap, O(n/M) rounds to finish, $O(n(\omega + m/M))$ I/O cost in total

Parallel Computational Model and Parallel Write-efficient Algorithms

A work-stealing scheduler can run a computation on p cores using time:

$$O\left(\frac{n}{p} + \log n\right)$$

The work-stealing scheduler is used in OpenMP, CilkPlus, Intel TBB, MS PPL, etc.

The nested-parallel model

Using a work-stealing scheduler:

Extra work for scheduling (#steals): O(pD)

W (work): total computation

D (depth): longest chain of all paths

Running time on p cores: $\frac{W}{p} + O(D)$

The asymmetric nested-parallel model

Using a work-stealing scheduler:

Extra work for scheduling (#steals): O(pD)

Running time on *p* cores: $\frac{W}{p} + O(\omega D)$

W (work): total computation w/ expensive writes

D (depth): longest unweighted chain of all paths

Results of parallel algorithms

Problem	Work (W)	Depth (D)	Reduction of writes
Reduce	$\Theta(n+\omega)$	$\Theta(\log n)$	$\Theta(\log n)$
Ordered filter	$\Theta(n+\omega k)^{\dagger}$	$O(\log n)^{\uparrow}$	$\Theta(\log n)$
Comparison sort	$\Theta(n\log n + n\omega)^{\dagger}$	$O(\log n)^{\uparrow}$	$\Theta(\log n)$
List and tree contraction	$\Theta(n)$	$O(\omega \log n)^{\dagger}$	$\Theta(\omega)$
Minimum spanning tree	$O(\alpha(n)m + \omega n \log(\min(m/n, \omega)))$	$O(\operatorname{polylog} n)^{\dagger}$	$m/(n \cdot \log(\min(m/n, \omega)))$
2D convex hull	$O(n\log k + \omega n\log\log k)^{\S}$	$O(\log^2 n)$ [†]	output-sensitive
BFS tree	$\Theta(\omega n+m)^{\S}$	$\Theta(\delta \log n)^{\uparrow}$	O(m/n)

- k =output size
- δ = graph diameter
- \uparrow = with high probability

§ = expected

Sequential upp	M = O(1)	
Problem	I/O cost $Q(n)$ and work $W(n)$	Reduction ratio
Comparison sort	$\Theta(n\log n + \omega n)$	$O(\log n)$
Search tree, priority queue	$\Theta(\log n + \omega)$	$O(\log n)$
2D convex hull, triangulation	$O(n\log n + \omega n)$	$O(\log n)$
BFS, DFS, SCC, topological sort, block, bipartiteness, floodfill, biconnected components	$\Theta(m + n\omega)$	0(m/n)

-

- A random permutation provides each "element" a unique random priority
- Incrementally inserting each element into the current configuration

- A random permutation provides each "element" a unique random priority
- Incrementally inserting each element into the current configuration

- A random permutation provides each "element" a unique random priority
- Incrementally inserting each element into the current configuration

- Unfortunately, good parallel incremental algorithms for some geometry problems were unknown
- We describe a framework that can analyze the parallelism of many incremental algorithms
- Then we design a uniform approach to get the writeefficient versions of these algorithms

Problem	Work
Comparison sort, convex hull, Delaunay triangulation, <i>k</i> -d tree, interval tree, priority search tree	$\Theta(n\log n + \omega n)$
<i>k</i> -d linear programming, minimum enclosing disk	$\Theta(n+\omega n^{\epsilon})$

Cache Policy

Cache policy: decide the block to evict when a cache miss occurs

 Least recent used (LRU) policy is the most practical implementation

Cache policy: decide the block to evict when a cache miss occurs

Least recent used (LRU) policy is the most practical implementation

Challenge: LRU does not work well under the asymmetric setting

Consider the sequence of repeated instructions: W(1), W(2), ..., W(k-1), R(k), R(k+1), ..., R(2k+1)
A clever catherpoint cy costs and 2 for this sequence with cache size k

1	2	3	4	5	• • •	k-1	k ₩2
---	---	---	---	---	-------	-----	-------------

Challenge: LRU does not work well under the asymmetric setting

Consider the sequence of repeated instructions: W(1), W(2), ..., W(k-1), R(k), R(k+1), ..., R(2k+1)
A clever cache policy costs k + 2 for this sequence with cache size k
The LRU policy costs (k - 1) · ω + k + 2 with

cache size 2k

Challenge: LRU does not work well under the asymmetric setting

- Consider the sequence of repeated instructions: W(1), W(2), ..., W(k-1), R(k), R(k+1), ..., R(2k+1)
 A clever cache policy costs k + 2 for this sequence with cache size k
- The LRU policy costs $(k 1) \cdot \omega + k + 2$ with cache size 2k

Classic LRU policy has an ω -time cost comparing to the clever policy!

Solution: The Asymmetric LRU policy

 The cache is separated into two equal-sized pools: a read pool and a write pool

Read Pool

Write Pool

Asymmetric Slow Memory

Solution: The Asymmetric LRU policy

• When reading a location, if the block is:

- in the read pool, the read is free
- in the write pool, the block will be copied to read pool
- in neither, the block is loaded from main memory
- The rules for write pool are symmetric, but cost $\omega + 1$ since the blocks are all dirty and need to be written back

The new Asymmetric LRU policy is 3-competitive to the optimal policy

In practice,

 The cache does not need to be explicitly separated into two pools physically

 Use the dirty bit to identify and check, and change the eviction rule accordingly

Experiment Analysis

Software simulator [ESA18]

Can measure the number of reads and writes of an algorithm

Experimental results • Weighted reads and writes assuming writes are 6x more expensive 25.0 Relative I/O cost 20.0 15.0 10.0 5.0 0.0 Hashtable Sorting BFS SSSP Classic Write-efficient

Experimental results

 Weighted reads and writes assuming writes are 6x more expensive

Summary

Summary

 The new NVRAMs are available, which rise the challenge of read/write asymmetry in algorithm design

• New cost models to capture this asymmetry

 New upper and lower bounds on a number of fundamental problems

• New implementation with better performance

 This area is still new — there are many other problems worth investigating