
Write-efficient algorithms

6.886 Algorithm Engineering

Yan Gu, May 7, 2019

Classic Algorithms Research

…has focused on settings in which
reads & writes to memory have equal cost

But what if they have very DIFFERENT costs?
How would that impact Algorithm Design?

Emerging Memory Technologies

Motivation:
� DRAM is volatile

� DRAM energy cost is significant (~35% energy on data centers)

� DRAM density (bits/area) is limited

Emerging non-volatile main memory (NVRAMs)
Technologies
� Persistent

� Significantly lower energy

� Higher density: 512GB per DIMM

� Read latencies approaching DRAM

� Random-access
3D XPoint

Another Key Property:
Writes More Costly than Reads

In these emerging memory technologies, bits are stored
as “states” of the given material
¢ No energy to retain state
¢ Small energy to read state
- Low current for short duration

¢ Large energy to change state
- High current for long duration PCMWrites incur higher energy costs, higher

latency, and lower per-DIMM bandwidth
(power envelope constraints)

Sorting algorithm 1:
100# reads and 100#
writes on # elements
We can sort <1 million
entries per joule

¢Consider the energy issue and assume a read
costs 0.1 nJ and a write costs 10 nJ

Why does it matter?

read cost write cost

Sorting algorithm 2:
200# reads and 2# writes
on # elements
We can sort 25 million
entries per joule

read cost write cost

¢Writes are significantly more costly than reads
due to the cost to change the phases of materials
� higher latency, lower per-chip bandwidth, higher

energy costs

¢Higher energy à Lower per-chip (memory)
bandwidth

¢ Let the parameter ! > # be the cost for
writes relative to reads
� Expected to be between 5 to 30

Why does it matter?

Evolution of the memory hierarchy

CPU

L1 L2 L3

Main
memory
(DRAM)

Disk

1.5ns 5ns 20ns 100ns 4ms
64KB 256KB 32MB 64GB TB

~200 ns
from 512GB to 10TB level

NVRAM

Evolution of the memory hierarchy

CPU

L1 L2 L3
DRAM Disk

1.5ns 5ns 20ns 100ns 4ms
64KB 256KB 32MB 64GB TB

1.5ns 5ns 20ns 100ns 4ms
64KB 256KB 32MB 64GB TB

Evolution of the memory hierarchy

CPU

L1 L2 L3

DRAM

~200 ns
from 512GB to 10TB level

100ns
64GB

NVRAM

¢Databases: the data that is kept in the external
memory can now be on the main memory

¢Graph processing: large social networks
nowadays contain ~billion vertices and
>100 billion edges

¢Geometry applications: can handle more
precise meshes that support better effects

Impacts on Real-World Computation

¢The new NVRAMs raise the challenge to
design write-efficient algorithms

¢What we need:
� Modified cost models
� New algorithms
� New techniques to support efficient

computation (cache policy, scheduling, etc.)

� Experiment

Summary

New Cost Models

¢ Unit cost for:
� Any instruction on Θ(log &)-bit words
� Read/write a single memory location from an infinite

memory

Random-Access Machine (RAM)

CPU

Memory

1

1

¢ A single write cost ! instead of 1

But every instruction writes something…

Read/write asymmetry in RAM?

CPU write cost !

Memory

1

1 #

¢ Comprise of:
� a symmetric small-memory (cache) of size !, and
� an asymmetric large-memory (main memory) of unbounded

size, and an integer write cost "

¢ I/O cost #: instructions on cache are free

(%,')-Asymmetric RAM (ARAM)

CPU write cost "

Asymmetric
Large-Memory

Small-Memory

! words
0

1

'

¢ Comprise of:
� a symmetric small-memory (cache) of size !, and
� an asymmetric large-memory (main memory) of unbounded

size, and an integer write cost "

¢ I/O cost #: instructions on cache are free
¢ time $: instructions on cache take % unit of time

(',))-Asymmetric RAM (ARAM)

CPU write cost "

Asymmetric
Large-Memory

Small-Memory

! words

1

)
1
0

Lower and Upper Bounds

¢ Comparison sort on ! elements
¢ Read and comparison (without writes): Ω(! log !)
¢ Write complexity: Ω(!)

¢ Question: how to sort ! elements using ((! log !)
instructions (reads) and ((!) writes?
� Swap-based sorting (i.e. quicksort, heap sort) does

not seem to work
� Mergesort requires strictly ! writes for log ! rounds
� Selection sort uses linear write, but not work (read)

efficiency

Warm up: Asymmetric sorting

¢ Comparison sort on ! elements

¢ Read complexity: Ω(! log !)
¢ Write complexity: Ω(!)

¢ The algorithm: inserting each key in
random order into a binary search
tree. In-order traversing the tree gives
the sorted array. ((log ! tree depth
w.h.p.)

¢ Using balanced BSTs (e.g. AVL trees)
gives a deterministic algorithm, but
more careful analysis is required

Warm up: Asymmetric sorting

7

3 9

5

4

1

Trivial upper bounds

Problem I/O cost !(#) and
time %(#)

Reduction
ratio

Comparison sort Θ(# log # + +#) ,(log #)
Search tree, priority
queue Θ(log # + +) ,(log #)

2D convex hull,
triangulation ,(# log # + +#) ,(log #)
BFS, DFS, SCC,
topological sort,
block, bipartiteness,
floodfill, biconnected
components

Θ(- + #+) ,(-/#)

/ = ,(1)

Lower bounds

Problem
I/O cost

Classic
Algorithm Lower bound

Sorting network Θ "# log #log' Θ "# log #
log"'

Fast Fourier Transform Θ "# log #log' Θ "# log #
log"'

Diamond DAG (LCS,
edit distance) Θ #("

' Θ #("
'

An example of a diamond DAG:
Longest common sequence (LCS)

A C G T A T

A

T

C

G

A

T

An example of Diamond DAG:
Longest common sequence (LCS)

1 1 1 1 1 1

1 1 1 2 2 2

1 2 2 2 2 2

1 2 3 3 3 3

1 2 3 3 4 4

1 2 3 4 4 5

A C G T A T

A

T

C

G

A

T

Computation DAG Rule

DAG Rule / pebbling game:
¢ To compute the value of a node, must have the values

at all incoming nodes

¢ To show that for the computational DAG, there exists a
partitioning of the DAG that I/O cost is lower bounded

¢ However, since read and write has different cost,
previous techniques (e.g. [HK81]) cannot directly
apply

High-level proof idea

Standard Observations on DAG

A C G T A T

A

T

C

G

A

T

DAG (or DP table) has size !2
¢ (Input size is only 2!)
¢ Building table explicitly ⇒ !2 writes,
¢ but problem only inherently requires

writing last value

¢ Compute some nodes in cache but
don’t write them out

Storage lower bound of subcomputation
(diamond DAG rule, Cook and Sethi 1976):
Solving an !×! sub-DAG requires ! space to
store intermediate value

For ! > $, some values need to be written out

Storage lower bound of subcomputation
(diamond DAG rule, Cook and Sethi 1976):
Solving an !×! sub-DAG requires ! space to
store intermediate value

!

For ! > $, some values need to be written out

¢ Computing any 2"×2" diamond requires " writes to the
large-memory
� 2" storage space, " from small-memory

¢ To finish computation, every 2"×2" sub-DAG needs to
be computed, which leads to Ω %&

' writes

Proof sketch of lower bound

2"
Θ)*

"* ⋅ Ω(") = Ω)*
"

#sub-problem #write

¢ Lower bound: Θ "#
$ writes

¢ This lower bound is tight when breaking down into $% ×
$
%

sub-DAGs, and read & write-out the boundary only

A matching algorithm for the lower bound

'/2
2 ⋅ +
'/2 ⋅ + = - +%

'

#row/column #read/write

Upper bounds on graph algorithms

Problem
I/O cost !(#,%)

Classic algorithms New algorithms

Single-source
shortest-path ' (% + # log #

'(

)

min(

)

(+%/1 ,
(% + # log # ,
%((+ log #)

Minimum
spanning tree ' %('(min(%(,

% min(log # , #/1) + (#))

¢ Compute an SSSP requires ! " DECREASE-KEYs and
! # EXTRACT-MINs in Dijkstra’s algorithm
� Classic Fibonacci heap: ! $ " + # log #
� Balanced BST: ! " $ + log #
� Restrict the Fibonacci heap into the small-memory with size
): no writes to the large-memory to maintain the heap,
! #/) rounds to finish, ! # $ +"/) I/O cost in total

Fibonacci Heap

I/O cost of Dijkstra’s algorithm

small-memory

large-memory

Parallel Computational Model
and

Parallel Write-efficient Algorithms

A = 1 2 3 4 5 6 7 8

Sum(A):

3 7 11 15

10 26

36

+

Function SUM(A)
If |A| = 1 then return A(1)
In Parallel

a = SUM(first half of A)
b = SUM(second half of A)

return a + b

+ + +

+ +

+

A = 1 2 3 4 5 6 7 8

Sum(A):

3 7 11 15

10 26

36

+

A work-stealing scheduler can
run a computation on ! cores
using time:

" #
! + log #

+ + +

+ +

+

The work-stealing scheduler
is used in OpenMP, CilkPlus,
Intel TBB, MS PPL, etc.

! (work): total computation

" (depth): longest chain of
all paths

The nested-parallel model

Using a work-stealing
scheduler:

Extra work for
scheduling (#steals):

$"
Running time on $ cores:

!
$ + # "

Using a work-stealing
scheduler:

Extra work for
scheduling (#steals):

! "#
Running time on " cores:

$
" + ! &#$ (work): total computation

w/ expensive writes

(depth): longest unweighted
chain of all paths

The asymmetric nested-parallel model

Results of parallel algorithms

Problem Work (!) Depth (") Reduction of writes

Reduce Θ $ + & Θ log $ Θ(log $)
Ordered filter Θ $ + &, ↟ . log $ ↟ Θ(log $)
Comparison sort Θ $ log $ + $& ↟ . log $ ↟ Θ(log $)
List and tree
contraction Θ $. & log $ ↟ Θ(&)

Minimum
spanning tree

.(
)

/ $ 0
+ &$ log(min(0/$, &)) . polylog $ ↟ 0/($ ⋅

log(min(0/$, &)))
2D convex hull . $ log , + ω$ log log , § . log; $ ↟ output-sensitive

BFS tree Θ &$ +0 § Θ < log $ ↟ . 0/$

, = output size
< = graph diameter
↟ = with high probability
§ = expected

Sequential upper bounds

Problem I/O cost !(#) and
work %(#)

Reduction
ratio

Comparison sort Θ(# log # + +#) ,(log #)
Search tree, priority
queue Θ(log # + +) ,(log #)

2D convex hull,
triangulation ,(# log # + +#) ,(log #)
BFS, DFS, SCC,
topological sort,
block, bipartiteness,
floodfill, biconnected
components

Θ(- + #+) ,(-/#)

/ = ,(1)

¢ A random permutation provides each “element” a
unique random priority

¢ Incrementally inserting each element into the current
configuration

Randomized Incremental Algorithms

¢ A random permutation provides each “element” a
unique random priority

¢ Incrementally inserting each element into the current
configuration

Randomized Incremental Algorithms

1

2

4

3

117 5

9

10

8

6

¢ A random permutation provides each “element” a
unique random priority

¢ Incrementally inserting each element into the current
configuration

Randomized Incremental Algorithms

¢ Unfortunately, good parallel incremental algorithms for
some geometry problems were unknown

¢ We describe a framework that can analyze the
parallelism of many incremental algorithms

¢ Then we design a uniform approach to get the write-
efficient versions of these algorithms

Randomized Incremental Algorithms

Problem Work
Comparison sort, convex hull,
Delaunay triangulation, !-d tree,
interval tree, priority search tree

Θ # log # + (#

!-d linear programming,
minimum enclosing disk Θ # + (#)

Cache Policy

¢Least recent used (LRU) policy is the most
practical implementation

Cache policy: decide the block to evict
when a cache miss occurs

Cache Main Memory

1

0/1

¢Least recent used (LRU) policy is the most
practical implementation

Cache policy: decide the block to evict
when a cache miss occurs

Cache Main Memory

1

!

¢Consider the sequence of repeated instructions:
W(1), W(2), … , W(k-1), R(k), R(k+1), …, R(2k+1)

¢A clever cache policy costs ! + 2 for this
sequence with cache size !

Challenge: LRU does not work well
under the asymmetric setting

1 2 3 4 5 ⋯ k-1 k+1kk+2

W: write R: read

¢Consider the sequence of repeated instructions:
W(1), W(2), … , W(k-1), R(k), R(k+1), …, R(2k+1)

¢A clever cache policy costs ! + 2 for this
sequence with cache size !

¢The LRU policy costs ! − 1 ⋅ ' + ! + 2 with
cache size 2!

Challenge: LRU does not work well
under the asymmetric setting

1 2 3 4 5 ⋯ 2k-1 2k2k+1 1 2

¢Consider the sequence of repeated instructions:

W(1), W(2), … , W(k-1), R(k), R(k+1), …, R(2k+1)

¢A clever cache policy costs ! + 2 for this
sequence with cache size !

¢The LRU policy costs ! − 1 ⋅ ' + ! + 2 with
cache size 2!

Classic LRU policy has an '-time cost
comparing to the clever policy!

Challenge: LRU does not work well
under the asymmetric setting

¢ The cache is separated into two equal-sized pools: a
read pool and a write pool

Solution: The Asymmetric LRU policy

Read Pool

CPU

Write Pool

Asymmetric
Slow Memory

¢ When reading a location, if the block is:
� in the read pool, the read is free
� in the write pool, the block will be copied to read pool
� in neither, the block is loaded from main memory

¢ The rules for write pool are symmetric, but cost ! + 1
since the blocks are all dirty and need to be written back

Solution: The Asymmetric LRU policy

Read Pool

CPU

Write Pool

Asymmetric
Slow Memory

0 1
1

The new Asymmetric LRU policy is 3-competitive
to the optimal policy

In practice,

¢The cache does not need to be explicitly
separated into two pools physically

¢Use the dirty bit to identify and check, and
change the eviction rule accordingly

Read Pool

Write Pool

dirty bit, either 0 or 1

Experiment Analysis

¢ Can measure the number of reads and writes of an
algorithm

Software simulator [ESA18]

Experimental results

0.0

5.0

10.0

15.0

20.0

25.0

Hashtable Sorting BFS SSSP
Classic Write-efficient

R
el

at
iv

e
I/O

 c
os

t

¢ Weighted reads and writes assuming writes are 6x more
expensive

Hash table Quicksort

BFS

Dijkstra’sk-level hash
table

Write-efficient
Samplesort Write-efficient

BFS

Phased
Dijkstra’s

0.0

5.0

10.0

15.0

20.0

25.0

Hashtable Sorting BFS SSSP
Classic Write-efficient

R
el

at
iv

e
I/O

 c
os

t

¢ Weighted reads and writes assuming writes are 6x more
expensive

Experimental results

Summary

¢The new NVRAMs are available, which rise the
challenge of read/write asymmetry in algorithm
design

¢New cost models to capture this asymmetry

¢New upper and lower bounds on a number of
fundamental problems

¢New implementation with better performance

¢This area is still new — there are many other
problems worth investigating

Summary

