
Δ-Stepping: A Parallelizable 
Shortest Path Algorithm

U. Meyer, P. Sanders

Presented by Helen He



Parallel Single Source Shortest Path (SSSP)

• Large graphs need good parallel algorithms
• Parallel SSSP are a bottleneck
• Lots of sequential SSSP with poor worst-case bounds perform well 

practically 



SSSP Basics

• “Relaxing” – update distance label if route through another vertex is 
shorter
• Label-setting algorithms (e.g. Dijkstra)
• Label-correcting algorithms (e.g. Bellman-Ford)
• Label setting has better worst-case bounds, but label-correcting is 

often better in practice



Dijkstra’s Overview

• Set source distance to 0, all others at infinity
• Consider all the current node’s neighbors, relax outgoing edges
• Mark the current node as visited, never visit it again
• If the destination node hasn’t been found, continue with the 

unvisited node with the smallest tentative distance
• Bucket implementation visits multiple nodes at once based off their 

tentative distances



Δ-Stepping

• Buckets of vertices grouped by their temporary distance labels
• B[i] contains vertices with labels in [i*Δ, (i+1)*Δ]
• Can reuse empty buckets to save space
• Outer loop proceeds through the buckets
• Inner loop processes the bucket until it’s empty



Bucket Processing

• Each vertex in the bucket has outgoing edges which are either “light” 
(weight ≤ Δ) or “heavy” (weight > Δ)
• When a bucket is processed, it is first emptied
• All light edges are relaxed
• Relaxing an edge can cause the destination vertex to be inserted into 

the current bucket
• Process bucket until it is empty, then relax its heavy edges



3
3

5
3

Source

Current Bucket

Reachable Via HeavyReachable Via Heavy

Reachable Via Light

Δ=3, B[1] = [3, 6)
Phase 1

https://cs.iupui.edu/~fgsong/LearnHPC/sssp/deltaStep.html

https://cs.iupui.edu/~fgsong/LearnHPC/sssp/deltaStep.html


4
5

Current Bucket

Reachable Via HeavyReachable Via Heavy

Reachable Via Light

Out of Bucket, Unsettled

Δ=3, B[1] = [3, 6)
Phase 1



3
3

5
3

Current Bucket

Reachable Via HeavyReachable Via Heavy

Reachable Via Light

Out of Bucket, Unsettled

For Future Bucket

Δ=3, B[1] = [3, 6)
Phase 2



3
3

5
3

Current Bucket

Reachable Via HeavyReachable Via Heavy

Reachable Via Light

Out of Bucket, Unsettled

For Future Bucket

Δ=3, B[1] = [3, 6)
Phase 2



3
3

5
3

Current Bucket

Reachable Via HeavyReachable Via Heavy

Reachable Via Light

Out of Bucket, Unsettled

For Future Bucket

Δ=3, B[1] = [3, 6)
Phase 2



3
3

5
3

Current Bucket

Reachable Via HeavyReachable Via Heavy

Reachable Via Light

Out of Bucket, Unsettled

For Future Bucket

Δ=3, B[1] = [3, 6)
Phase 2, end



3
3

5
3

Current Bucket

Reachable Via HeavyReachable Via Heavy

Reachable Via Light

Out of Bucket, Settled

For Future Bucket

Δ=3, B[1] = [3, 6)
Relax Heavy



3
3

5
3

Current Bucket

Reachable Via HeavyReachable Via Heavy

Reachable Via Light

Out of Bucket, Settled

For Future Bucket

Δ=3, B[2] = [6, 9)
Phase 3



3
3

5
3

Current Bucket

Reachable Via HeavyReachable Via Heavy

Reachable Via Light

Out of Bucket, Unsettled

For Future Bucket

Δ=3, B[2] = [6, 9)
Phase 3



Choice of Δ

• Δ = 1 reduces to Dijkstra’s 
• Δ >= n * max edge weight reduces to Bellman-Ford (exclusively use 

first bucket)
• ∆-stepping wants to find easily computable fixed ∆ that yields a good 

compromise between these two extremes



Analysis

• Sequential ∆-stepping can be implemented to run in time O(n + m + 
L/∆ + n∆ + m∆)
• If the edge weights are random, n∆ + m∆ = O(n + m) whp for ∆ = 

Θ(1/d)
• Therefore runs in O(n + m + d · L) on random edge weights
• d can be removed from the execution time using more sophisticated 

load balancing algorithms



Parallel Analysis

• Simple parallelization runs in O( L/∆ · d · l ∆ · logn)
• Can accelerate by preprocessing the graph with shortcut edges for 

each shortest path <= ∆
• Shortcuts ensure constant number of phases per nonempty bucket
• Shortcuts found by exploring from all nodes in parallel. 

• For random edge weights, it can then take O(d · L · log n + log2 n) time 
and O(n + m + d · L · log n) work on average



Performance Evaluation

• Implemented algorithm for distributed memory using MPI
• 9.2x speedup against sequential with 16 processors
• Sequential is 3.1x faster than optimized Dijkstra
• Worse on dense graphs



Drawbacks

• No average-case analysis done on non-integer weights
• Tuning ∆ on graph without independent random edge weights


