Δ-Stepping: A Parallelizable Shortest Path Algorithm

U. Meyer, P. Sanders

Presented by Helen He

Parallel Single Source Shortest Path (SSSP)

- Large graphs need good parallel algorithms
- Parallel SSSP are a bottleneck
- Lots of sequential SSSP with poor worst-case bounds perform well practically

SSSP Basics

- "Relaxing" update distance label if route through another vertex is shorter
- Label-setting algorithms (e.g. Dijkstra)
- Label-correcting algorithms (e.g. Bellman-Ford)
- Label setting has better worst-case bounds, but label-correcting is often better in practice

Dijkstra's Overview

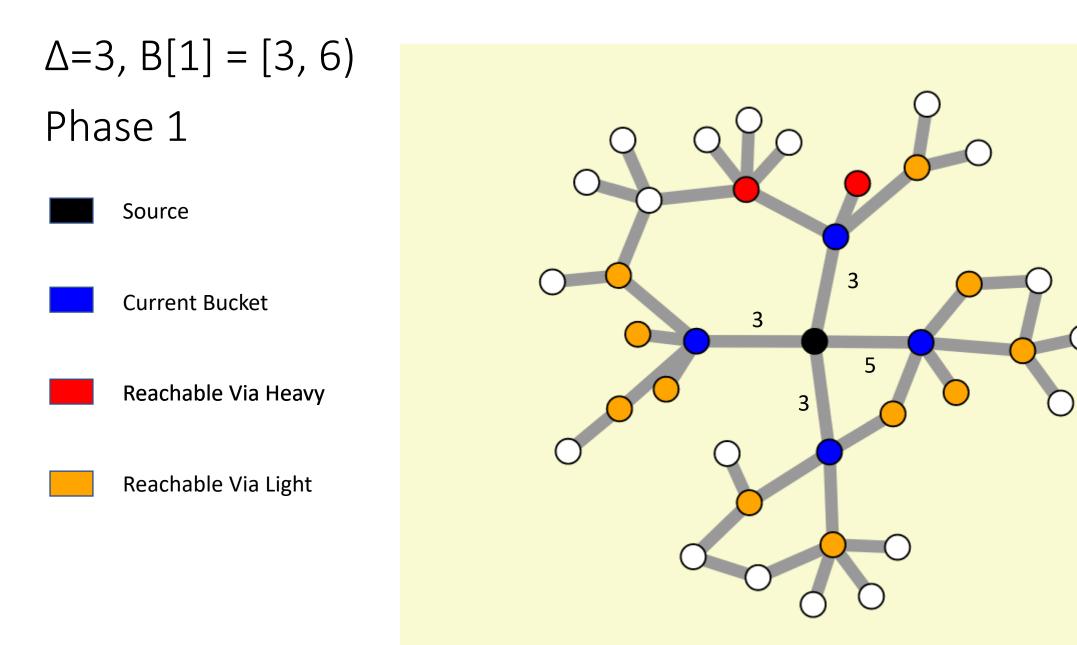
- Set source distance to 0, all others at infinity
- Consider all the current node's neighbors, relax outgoing edges
- Mark the current node as visited, never visit it again
- If the destination node hasn't been found, continue with the unvisited node with the smallest tentative distance
- Bucket implementation visits multiple nodes at once based off their tentative distances

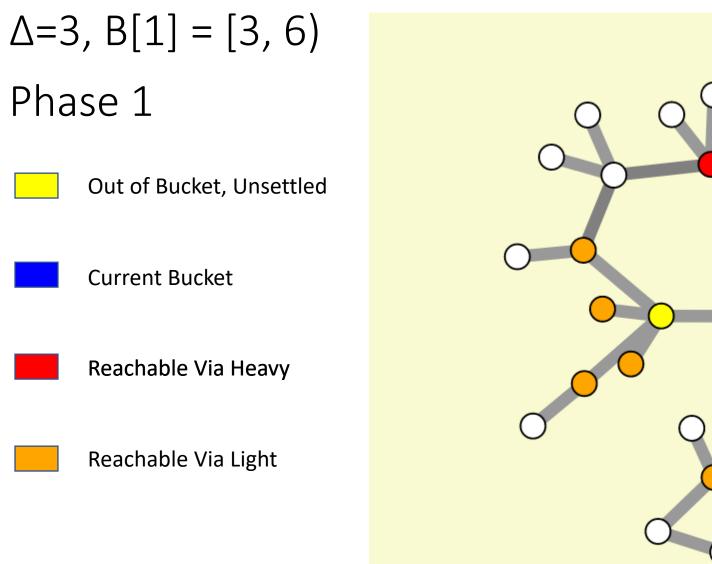
Δ-Stepping

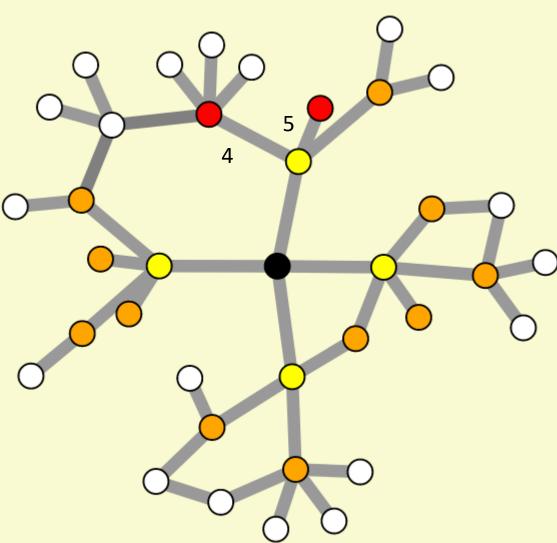
- Buckets of vertices grouped by their temporary distance labels
- B[i] contains vertices with labels in $[i^*\Delta, (i+1)^*\Delta]$
- Can reuse empty buckets to save space
- Outer loop proceeds through the buckets
- Inner loop processes the bucket until it's empty

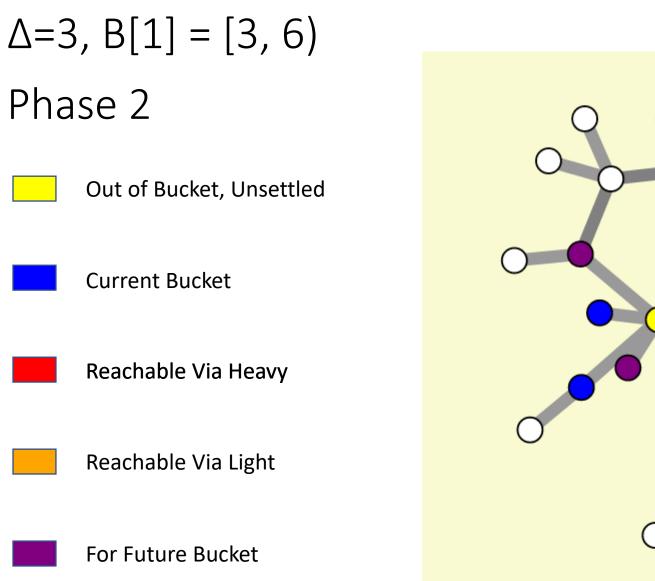
Bucket Processing

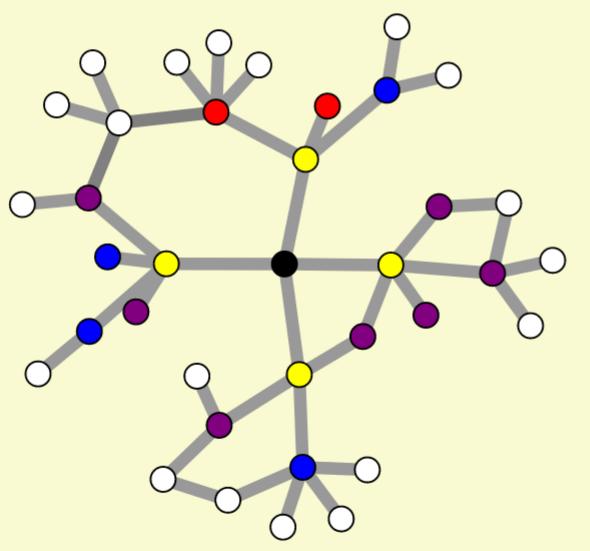
- Each vertex in the bucket has outgoing edges which are either "light" (weight $\leq \Delta$) or "heavy" (weight $> \Delta$)
- When a bucket is processed, it is first emptied
- All light edges are relaxed
- Relaxing an edge can cause the destination vertex to be inserted into the current bucket
- Process bucket until it is empty, then relax its heavy edges

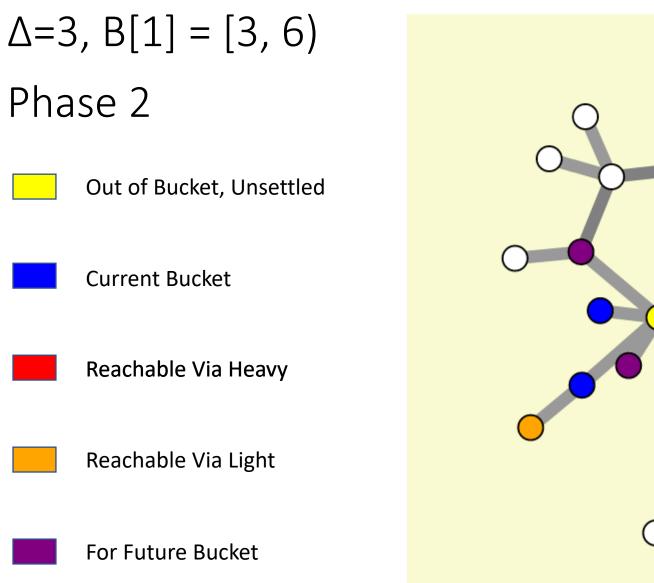


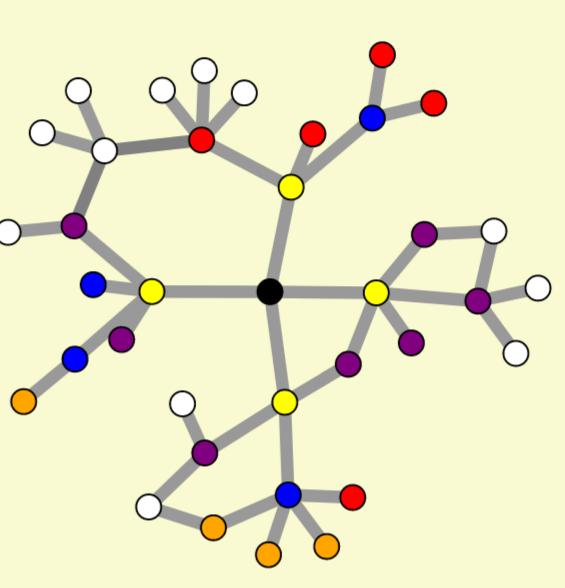


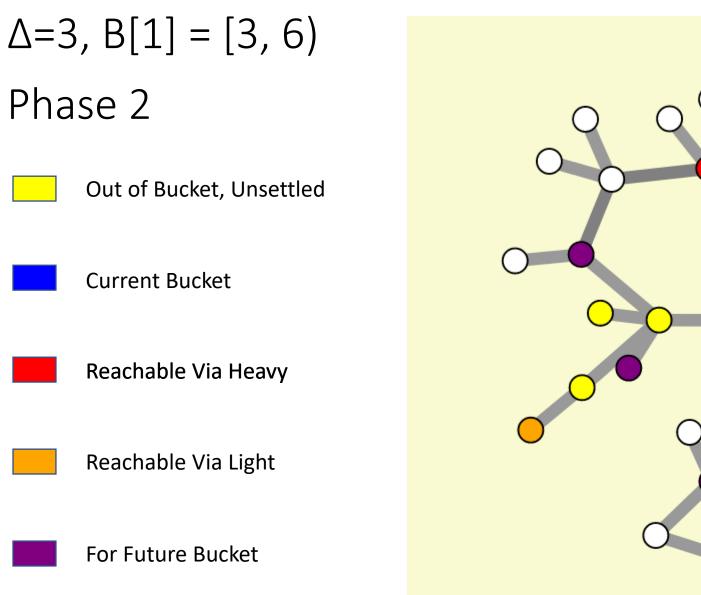


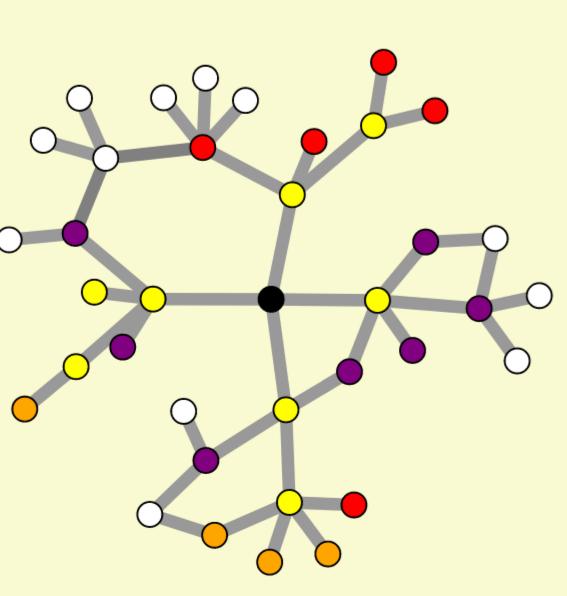


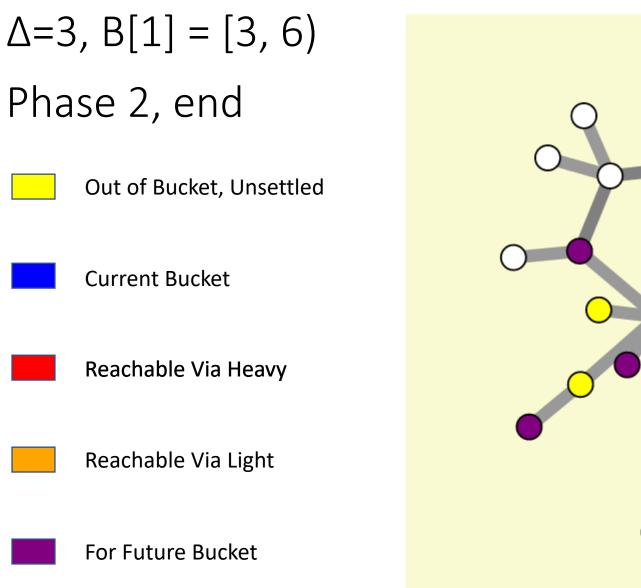


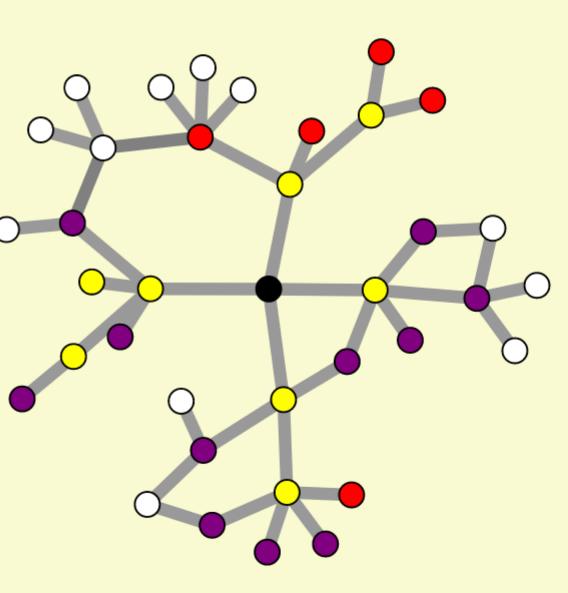


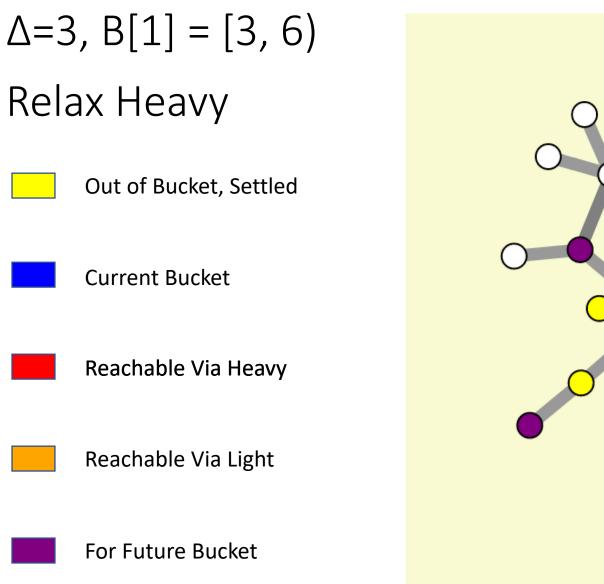


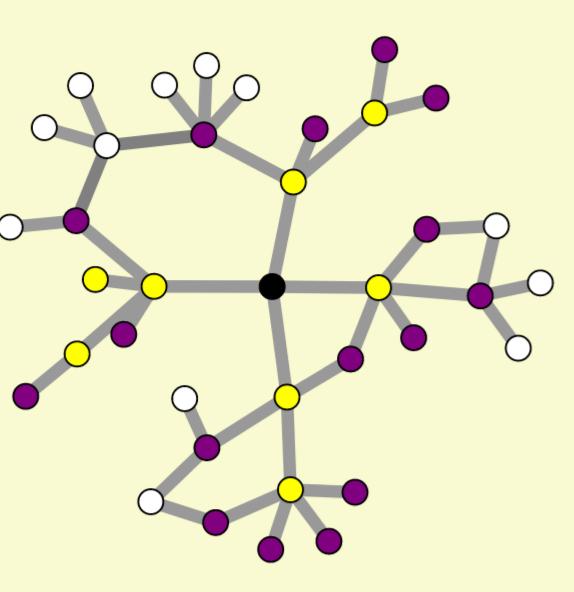


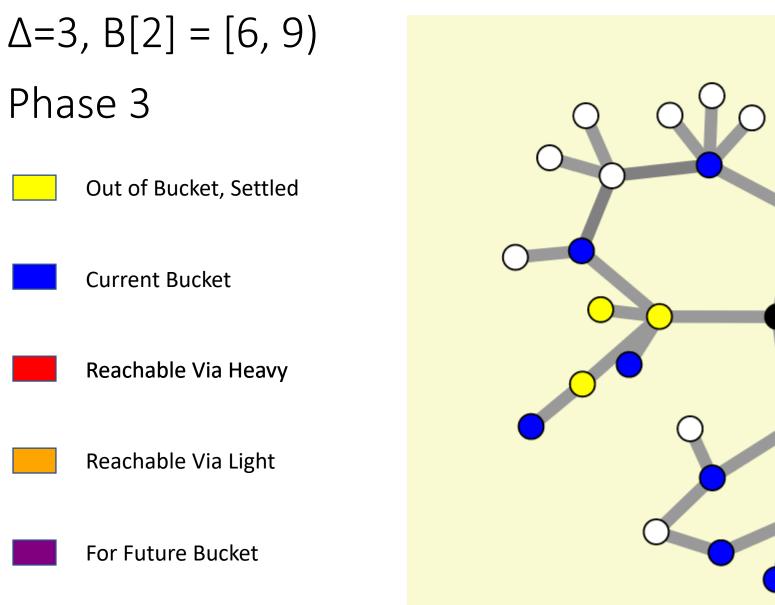


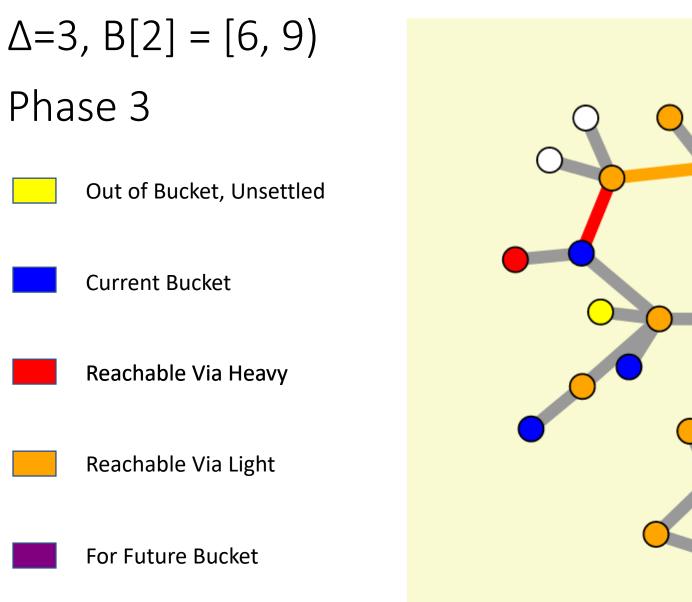


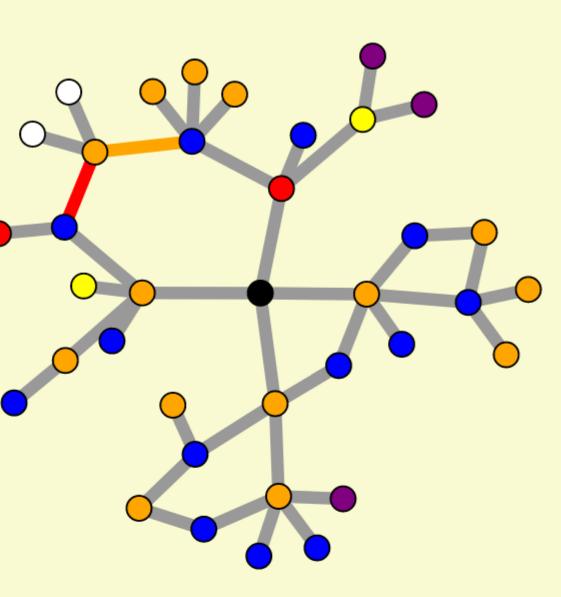












Choice of Δ

- $\Delta = 1$ reduces to Dijkstra's
- Δ >= n * max edge weight reduces to Bellman-Ford (exclusively use first bucket)
- Δ -stepping wants to find easily computable fixed Δ that yields a good compromise between these two extremes

Analysis

- Sequential Δ -stepping can be implemented to run in time O(n + m + L/ Δ + n $_{\Delta}$ + m $_{\Delta}$)
- If the edge weights are random, $n_{\Delta} + m_{\Delta} = O(n + m)$ whp for $\Delta = \Theta(1/d)$
- Therefore runs in $O(n + m + d \cdot L)$ on random edge weights
- *d* can be removed from the execution time using more sophisticated load balancing algorithms

Parallel Analysis

- Simple parallelization runs in O($L/\Delta \cdot d \cdot I_{\Delta} \cdot \log n$)
- Can accelerate by preprocessing the graph with shortcut edges for each shortest path <= Δ
 - Shortcuts ensure constant number of phases per nonempty bucket
 - Shortcuts found by exploring from all nodes in parallel.
- For random edge weights, it can then take O(d · L · log n + log² n) time and O(n + m + d · L · log n) work on average

Performance Evaluation

- Implemented algorithm for distributed memory using MPI
- 9.2x speedup against sequential with 16 processors
- Sequential is 3.1x faster than optimized Dijkstra
- Worse on dense graphs

Drawbacks

- No average-case analysis done on non-integer weights
- Tuning Δ on graph without independent random edge weights