
Direction Optimizing 
breadth-first search

Authors: Scott Beamer, Krste Asanović, David Patterson
Presenter: Patrick Insinger



Applied Breadth First Search

• BFS returns the shortest path for 
unweighted graphs, very useful for 
analyzing social networks
• Social network graphs are typically low-

diameter and scale-free
• Low-diameter (small-world) à the 

maximum distance between any two nodes 
is low
• Scale-free à the degree distribution 

follows a power law KONECT Facebook wall post degree distribution



Difficulties of Optimizing Breadth First Search

• Lack of spatial locality
• For large graphs, finding neighbors 

is essentially a random access
• Performance is memory-bound on 

individual machines, 
communication-bound on clusters
• Instead of trying to do additional 

work optimizing locality, this paper 
tries to do less work inspecting 
edges.



Understanding Edge Checks

• Paper has four edge check classifications
• Valid Parent – neighbor at depth d-1 of a vertex at depth d
• Peer – neighbor at same depth
• Failed child – any neighbor at depth d+1 of a vertex at depth d, already visited
• Claimed child – any neighbor at depth d+1 of a vertex at depth d, not visited

• Florentine Families Example



Understanding Edge Checks



Idea: Bottom Up Search

“Instead of each vertex in the frontier attempting to become the parent 
of all of its neighbors, each unvisited vertex attempts to find any parent 
among its neighbors.”



Idea: Bottom Up Search

• Works well when the frontier is 
large.
• Doesn’t need mutual exclusion 

for parallelization!
• Needs frontier conversion:
• Top-Down: FIFO-queue
• Bottom-Up: bitmap



Hybrid Algorithm

• Idea:
• Small frontier à top-down
• Large frontier à bottom-up



Hybrid Algorithm

• State machine determines 
algorithm
• Switch from top-down to 

bottom-up when # of edges to 
explore from frontier > 1/alpha * 
(# of edges to explore from 
unvisited nodes)
• Switch from bottom-up to top-

down when # of vertices in 
frontier < 1/beta * (# of vertices)



Tuning

• Greedy tuning, alpha (14) then beta (24)



Hybrid Control Evaluation

• Empirically, within 25% of optimal



Performance Evaluation

TEPS – Edges traversed per second = (# of edges in graph)/(runtime)



Time breakdown



Parallel Performance Evaluation


