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Agenda
● Background and Problem Motivation (3 min)

○ Social network scope

● The Brandes Algorithm (22 min)
○ Unweighted graphs in O(nm) runtime and O(n + m) space

○ Weighted graphs in O(nm + n^2logn) runtime and O(n + m) space

● Experimental Results (1 min)
○ Processing Synthetic and Real-World Datasets

● Questions and Discussion (4 min)
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What is “Centrality” ?
● In graphs, centrality can imply:

○ Importance
○ Influence
○ General well-connectedness

● “Betweenness” is a measure of centrality
○ based on shortest paths

● First formalized by a Sociologist (Freeman 1977)

Claudio Rocchini https://commons.wikimedia.org/wiki/File:Graph_betweenness.svg 3

https://www.jstor.org/stable/3033543?origin=crossref&seq=1


Extreme Centrality in Social networks
● Celebrities = Social Outliers
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Centrality Of Most People (Vertices)
● Adult mean of 338, median of 200
● “2.32 billion monthly active users on Facebook as of 

December 31, 2018” [Facebook.com]
○ Only 15% have more than 500 friends

● Notice social networks are still sparse
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(Pew Research Center)
http://www.pewresearch.org/fact-
tank/2014/02/03/what-people-like-dislike-about-
facebook/



Previous “Betweenness” Centrality Challenges
● Well-known Ω(n^3) bottleneck to compute betweenness 

centrality (Freeman 1977; Anthonisse, 1971)
● Prohibitive when V > few hundred :(
● Linkage-based approximation (Everett et al., 1999)
● Brandes saw an opportunity, and for exact calculations

● Leverage social sparsity (from the common case)
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Introducing The Betweenness Centrality Algorithm
● Betweenness centrality values shortest path influence 

[Freeman, 1977; Anthonisse 1971]

● Leverage traversal algorithms (BFS)
● Two Major Steps

○ First major step in algorithm figures out all shortest paths
○ Second final step of using them to accumulate “dependency”
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The Betweenness Centrality Algorithm: Only 2 Steps
● The first major step is calculating all shortest paths 

for all vertices, introducing our first construct:  

lowercase sigma σ

● The second step is calculating all “pair-dependencies” 
introducing our second construct: 

lowercase delta !
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The Algorithm In Code
-------------
STEP 1:
Shortest Path 
Accumulation

σ

-------------
STEP 2:
Pairwise 
Dependency
Accumulation

!

(We will return 
to this)
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The Betweenness Centrality Algorithm Definition
● Betweenness Centrality definition: for a vertex v, for 

each starting and final vertex (s and t), sum the 
following important measurement: the number of shortest 
paths between each s and t that cross through an 
intermediary v, divided by the number of total shortest 
paths between each s and t

● This important measurement is called a “pair-dependency”, 
and betweenness centrality requires calculating it for 
all pairs of other vertices
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(draw example 1)



The Betweenness Centrality Algorithm: Constructs
● Accumulate pair-dependencies to get ans:

● For top half, “number of shortest paths between s and t 
passing through v” 

● Pair-dependency also gets its own construct:
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The Algorithm In Code: Step 1
-------------
STEP 1:
Shortest Path 
Accumulation

σ

-------------
STEP 2:
Pairwise 
Dependency
Accumulation

!

(We will return 
to this)
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First Step: Counting Number of Shortest Paths
● Recall first construct, lowercase sigma σ
● Originally accomplished with algebraic path counting

○ Calculates number of paths of length shorter than network diameter
○ Matrix multiplications were dominating factor
○ Excess calculations; for betweenness centrality we only need number 

of shortest paths between each pair of vertices

● Recall opportunity in sparsity of social networks
○ Count shortest paths with traversal: BFS (or Dijkstra if weighed)
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First Step: Formalizing Predecessors
● Create formal definition of a predecessor:

● Read (informally) as the set of vertices where one last 
edge (each {u, v}) connects each predecessor (each u) 
with the successor v, where the weight of the last edge 
added to the distance from s to each predecessor equals 
the total distance from s to the successor.
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(draw example 2)



First Step: Predecessor Relationship
● Predecessors allow us to work toward recursive solution 

thanks to separating out a successor and final edge

● Examine number of shortest paths to predecessors, and 
notice it is the same as num shortest paths to successor

● Remember, lowercase sigma σ is number of shortest paths
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First Step Final Thoughts Before Step 2 
● Corollary 4 provides bounds on finding shortest paths for 

all vertices using BFS and Dijkstra's as O(nm) and O(nm + 
n^2logn)
○ Run traversal n times (from n vertices)

● Now we will see Brandes’ innovation for step 2
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The Algorithm In Code: Step 2
-------------
STEP 1:
Shortest Path 
Accumulation

σ

-------------
STEP 2:
Pairwise 
Dependency
Accumulation

!

(We will return 
to this)
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Second Step: Sum All Pair-Dependencies
● Recall the second step of accumulating pair-dependencies 

gives us B.C.:

● Top half: “number of shortest paths between s and t 
passing through v”
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Need accumulation for all shortest paths for each v

● Single pair-dependency shortened to:



Second Step: Sum Pair-Dependencies...
● Introduce new notion of “dependency” to simplify all 

pairwise-dependencies of vertex s to vertex t each v

● Recall that second construct (pair-dependency delta !) is 
created from first construct (number of shortest path 

counting sigma σ) 
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Second Step: Sum Pair-Dependencies...Recursively!
● This is the novel predecessor relationship leveraged 

while performing BFS / Dijkstra on these sparse graphs
● The general case is covered by Theorem 6
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Proving Important Theorem 6 (Briefly)

● Extend pair-dependency to include an intermediary edge e {v,w} (from 
predecessor v to successor w) as well as vertex v

● Let w be any vertex with v as a predecessor. Of the shortest paths from s 
to w, many first go from s to v and then use {v, w}. The ratio times the 
shortest paths from s to t that go through successor w equal the number of 
shortest paths that contain {v, w} and v

(e) (e)
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Proving Theorem 6 (Briefly) Using Predecessor Edge
● Theorem 6 Proof Continued

(e)
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(e)

(e)(e)



The Algorithm In Code:
The Final Answer -------------

STEP 1:
Shortest Path 
Accumulation

-------------
STEP 2:
Pairwise 
Dependency
Accumulation

Theorem 6 updates dependency 
for predecessors by examining 
successor, and accumulates 
B.C. 23

(Final Time)



Synthetic and Real Dataset Experimental results
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● Computed previously uncomputable 
dataset in 448 seconds, using less 
than 8MB of memory



Basic Unweighted Algorithm Extension 
● Corollary 7 shows DAG extension (but not as relevant to 

social network scope)
● Theorem 8 extends Theorem 6 for weighted graphs 

(Dijkstra)
● Undirected graphs require Betweenness Centrality scores 

divided by two
○ Why?
○ Shortest paths are considered twice
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Supports Other CentralitY Measures (Limited Explanation)
● Claims single-source shortest-path traversal supports 

“easy computation” of other shortest path centrality 
measures

● But only a one sentence explanation
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Questions and Discussion
● Some discussion questions:

● Results from Sparc 440 Mhz/256MB, 200MHz Pentium Pro, 450MHz Pentium III 
○ What could be further optimized given modern hardware?

● Paper claims all “standard centrality indices based on shortest paths can 
… be evaluated simultaneously.” 
○ What parts of the code would be strategically reused? 
○ What would be the challenges?

● Paper algorithm code does not explicitly show shortest path calculations 
in parallel.
○ Do we think it is possible? Why or why not?
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Thank you For Listening and Participating

● Paper “A Faster Algorithm for Betweenness Centrality” by Ulrik Brandes 
(University of Konstanz)

● Presented by Taylor Andrews
○ tandrews@mit.edu
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