
A Faster Algorithm For
Betweenness Centrality

Paper by Ulrik Brandes, University of Konstanz
Brief 6.886 Presentation by Taylor Andrews

Tuesday, February 12th 2019
1

Agenda
● Background and Problem Motivation (3 min)

○ Social network scope

● The Brandes Algorithm (22 min)
○ Unweighted graphs in O(nm) runtime and O(n + m) space

○ Weighted graphs in O(nm + n^2logn) runtime and O(n + m) space

● Experimental Results (1 min)
○ Processing Synthetic and Real-World Datasets

● Questions and Discussion (4 min)

2

What is “Centrality” ?
● In graphs, centrality can imply:

○ Importance
○ Influence
○ General well-connectedness

● “Betweenness” is a measure of centrality
○ based on shortest paths

● First formalized by a Sociologist (Freeman 1977)

Claudio Rocchini https://commons.wikimedia.org/wiki/File:Graph_betweenness.svg 3

https://www.jstor.org/stable/3033543?origin=crossref&seq=1

Extreme Centrality in Social networks
● Celebrities = Social Outliers

4

Centrality Of Most People (Vertices)
● Adult mean of 338, median of 200
● “2.32 billion monthly active users on Facebook as of

December 31, 2018” [Facebook.com]
○ Only 15% have more than 500 friends

● Notice social networks are still sparse

5

(Pew Research Center)
http://www.pewresearch.org/fact-
tank/2014/02/03/what-people-like-dislike-about-
facebook/

Previous “Betweenness” Centrality Challenges
● Well-known Ω(n^3) bottleneck to compute betweenness

centrality (Freeman 1977; Anthonisse, 1971)
● Prohibitive when V > few hundred :(
● Linkage-based approximation (Everett et al., 1999)
● Brandes saw an opportunity, and for exact calculations

● Leverage social sparsity (from the common case)

6

Introducing The Betweenness Centrality Algorithm
● Betweenness centrality values shortest path influence

[Freeman, 1977; Anthonisse 1971]

● Leverage traversal algorithms (BFS)
● Two Major Steps

○ First major step in algorithm figures out all shortest paths
○ Second final step of using them to accumulate “dependency”

7

The Betweenness Centrality Algorithm: Only 2 Steps
● The first major step is calculating all shortest paths

for all vertices, introducing our first construct:

lowercase sigma σ

● The second step is calculating all “pair-dependencies”
introducing our second construct:

lowercase delta !
8

The Algorithm In Code

STEP 1:
Shortest Path
Accumulation

σ

STEP 2:
Pairwise
Dependency
Accumulation

!

(We will return
to this)

9

The Betweenness Centrality Algorithm Definition
● Betweenness Centrality definition: for a vertex v, for

each starting and final vertex (s and t), sum the
following important measurement: the number of shortest
paths between each s and t that cross through an
intermediary v, divided by the number of total shortest
paths between each s and t

● This important measurement is called a “pair-dependency”,
and betweenness centrality requires calculating it for
all pairs of other vertices

10

(draw example 1)

The Betweenness Centrality Algorithm: Constructs
● Accumulate pair-dependencies to get ans:

● For top half, “number of shortest paths between s and t
passing through v”

● Pair-dependency also gets its own construct:

11

The Algorithm In Code: Step 1

STEP 1:
Shortest Path
Accumulation

σ

STEP 2:
Pairwise
Dependency
Accumulation

!

(We will return
to this)

12

First Step: Counting Number of Shortest Paths
● Recall first construct, lowercase sigma σ
● Originally accomplished with algebraic path counting

○ Calculates number of paths of length shorter than network diameter
○ Matrix multiplications were dominating factor
○ Excess calculations; for betweenness centrality we only need number

of shortest paths between each pair of vertices

● Recall opportunity in sparsity of social networks
○ Count shortest paths with traversal: BFS (or Dijkstra if weighed)

13

First Step: Formalizing Predecessors
● Create formal definition of a predecessor:

● Read (informally) as the set of vertices where one last
edge (each {u, v}) connects each predecessor (each u)
with the successor v, where the weight of the last edge
added to the distance from s to each predecessor equals
the total distance from s to the successor.

14

(draw example 2)

First Step: Predecessor Relationship
● Predecessors allow us to work toward recursive solution

thanks to separating out a successor and final edge

● Examine number of shortest paths to predecessors, and
notice it is the same as num shortest paths to successor

● Remember, lowercase sigma σ is number of shortest paths

15

when

First Step Final Thoughts Before Step 2
● Corollary 4 provides bounds on finding shortest paths for

all vertices using BFS and Dijkstra's as O(nm) and O(nm +
n^2logn)
○ Run traversal n times (from n vertices)

● Now we will see Brandes’ innovation for step 2

16

The Algorithm In Code: Step 2

STEP 1:
Shortest Path
Accumulation

σ

STEP 2:
Pairwise
Dependency
Accumulation

!

(We will return
to this)

17

Second Step: Sum All Pair-Dependencies
● Recall the second step of accumulating pair-dependencies

gives us B.C.:

● Top half: “number of shortest paths between s and t
passing through v”

18

Need accumulation for all shortest paths for each v

● Single pair-dependency shortened to:

Second Step: Sum Pair-Dependencies...
● Introduce new notion of “dependency” to simplify all

pairwise-dependencies of vertex s to vertex t each v

● Recall that second construct (pair-dependency delta !) is
created from first construct (number of shortest path

counting sigma σ)

19

Second Step: Sum Pair-Dependencies...Recursively!
● This is the novel predecessor relationship leveraged

while performing BFS / Dijkstra on these sparse graphs
● The general case is covered by Theorem 6

20

Proving Important Theorem 6 (Briefly)

● Extend pair-dependency to include an intermediary edge e {v,w} (from
predecessor v to successor w) as well as vertex v

● Let w be any vertex with v as a predecessor. Of the shortest paths from s
to w, many first go from s to v and then use {v, w}. The ratio times the
shortest paths from s to t that go through successor w equal the number of
shortest paths that contain {v, w} and v

(e) (e)

21

Proving Theorem 6 (Briefly) Using Predecessor Edge
● Theorem 6 Proof Continued

(e)

22

(e)

(e)(e)

The Algorithm In Code:
The Final Answer -------------

STEP 1:
Shortest Path
Accumulation

STEP 2:
Pairwise
Dependency
Accumulation

Theorem 6 updates dependency
for predecessors by examining
successor, and accumulates
B.C. 23

(Final Time)

Synthetic and Real Dataset Experimental results

24

● Computed previously uncomputable
dataset in 448 seconds, using less
than 8MB of memory

Basic Unweighted Algorithm Extension
● Corollary 7 shows DAG extension (but not as relevant to

social network scope)
● Theorem 8 extends Theorem 6 for weighted graphs

(Dijkstra)
● Undirected graphs require Betweenness Centrality scores

divided by two
○ Why?
○ Shortest paths are considered twice

25

Supports Other CentralitY Measures (Limited Explanation)
● Claims single-source shortest-path traversal supports

“easy computation” of other shortest path centrality
measures

● But only a one sentence explanation

26

Questions and Discussion
● Some discussion questions:

● Results from Sparc 440 Mhz/256MB, 200MHz Pentium Pro, 450MHz Pentium III
○ What could be further optimized given modern hardware?

● Paper claims all “standard centrality indices based on shortest paths can
… be evaluated simultaneously.”
○ What parts of the code would be strategically reused?
○ What would be the challenges?

● Paper algorithm code does not explicitly show shortest path calculations
in parallel.
○ Do we think it is possible? Why or why not?

27

Thank you For Listening and Participating

● Paper “A Faster Algorithm for Betweenness Centrality” by Ulrik Brandes
(University of Konstanz)

● Presented by Taylor Andrews
○ tandrews@mit.edu

28

http://www.algo.uni-konstanz.de/publications/b-fabc-01.pdf

