A FASTER ALGORITHM tOR
DETWEENNESS CENTRALLTY

AGENDA

e Background and Problem Motivation (3 min)

o Social network scope

e The Brandes Algorithm (22 min)
o Unweighted graphs in 0(nm) runtime and O(n + m) space

o Weighted graphs in O(nm + n”2logn) runtime and O(n + m) space
e Experimental Results (1 min)
o Processing Synthetic and Real-World Datasets

® Questions and Discussion (4 min)

WHAT IS “CENTRALITY ?

e In graphs, centrality can imply:
o Importance
o Influence
o General well-connectedness
e “Betweenness” is a measure of centrality
o based on shortest paths
e First formalized by a Sociologist (Freeman 1977)

Claudio Rocchini https://commons.wikimedia.org/wiki/File:Graph_betweenness.svg

https://www.jstor.org/stable/3033543?origin=crossref&seq=1

EXTREME CENTRALLTY IN SOCTAL NETWORKS

e Celebrities = Social Outliers

"y

Male

32 years old
Santa Monica,
CALIFORNIA
United States

Last Login:
10/22/2007

Donald J. Trump &

realDonaldTrump

Tweets Following Followers

Tweets Following Followers

1,996 50 34.1M 1,865 8 17.9M

: Tweets Tweets & replic : . Tweets Tweets & replie
Lil Wayne WEEZY F& Pope Francis & ?

@LilTunechi ‘ Lil Wayne WEEZY F@ @ ¢ @Pontifex - Pope Francis @ @Pontife;

CENTRALLTY OF MOST PEOPLE (VERTICES)

e Adult mean of 338, median of 200
e “2,32 billion monthly active users on Facebook as of

December 31, 2018” [Facebook.com]
o Only 15% have more than 500 friends

e Notice social networks are still sparse

(Pew Research Center)

http://www.pewresearch.org/fact-

tank/2014/02/03/what-people-like-dislike-about-
facebook/

PREVIOUS “BETWEENNESS™ CENTRALITY CHALLENGES

e Well-known Q(n”3) bottleneck to compute betweenness
centrality (Freeman 1977; Anthonisse, 1971)

e Prohibitive when V > few hundred :(

e Linkage-based approximation (Everett et al., 1999)

e Brandes saw an opportunity, and for exact calculations

e Leverage social sparsity (from the common case)

INTRODUCING THE BETWEENNESS CENTRALLTY ALGORITHM

e Betweenness centrality values shortest path influence
[Freeman, 1977; Anthonisse 1971]

e Leverage traversal algorithms (BFS)
e Two Major Steps

o First major step in algorithm figures out all shortest paths
o Second final step of using them to accumulate “dependency”

THE BETWEENNESS CENTRALITY ALGORITHM: ONLY 2 STEPS

e The first major step is calculating all shortest paths
for all vertices, introducing our first construct:

lowercase sigma O

e The second step is calculating all “pair-dependencies”
introducing our second construct:

lowercase delta §

THE ALGORITHM IN CODE

(We will return
to this)

Algorithm 1: Betweenness centrality in unweighted graphs

STEP 1:
Shortest Path
Accumulation

o

STEP 2: S 8 retwrns vertices in order of non-increasing distance from s
Pa.i rwi se while 5 not empty do
pop w — 5;
Dependency for v & Pluw] do 8[e] — 8[e] + - (1 + afw));
Accumulation if w# s then Cglw] — Cglw] + 8w
end
5 end

Cgly] —0,vel:

for s € V do

S «— empty stack:

Plw] — empty list. w € V;

alf] —0.telV: afs] —1;

df] — =1, te V: dls] O

() — empty gquene:

enquene 5 — J;

while) not empty do
dequene v «— ();

push v — §;

foreach neighbor w of v do
S w found for the first time?
if dfw| < 0 then
enquene w —
dw] — dv] + 1:

end

Jf shortest path fo w via v¥
if djw| = d[v] + 1 then
alw] — alw] + alv):
append v — Plw]:

end
end
end

v — 0, vel,;

THE BETWEENNESS CENTRALITY ALGORITHM DEFINITION

(draw example 1)

e Betweenness Centrality definition: for a vertex v, for
each starting and final vertex (s and t), sum the
following important measurement: the number of shortest
paths between each s and t that cross through an
intermediary v, divided by the number of total shortest
paths between each s and t

e This important measurement is called a “pair-dependency”,
and betweenness centrality requires calculating it for
all pairs of other vertices

B o5t (V) betweenness centrality
Cp(v) = Z O st (Freeman, 1977; Anthonisse, 1971)

s#Ev#EteV
10

THE BETWEENNESS CENTRALITY ALGORITHM: CONSTRUCTS

e Accumulate pair-dependencies to get ans:

Cp(v) =

Z o5t (V) betweenness centrality

Lvdiey Ot (Freeman, 1977; Anthonisse, 1971)

e For fop half, “number of shortest paths between s and t
passing through v”

o) =14 if dg(s,t) < dg(s,v) +dg(v,t)
. | 0sp-0uw otherwise

e Pair-dependency also gets its own construct:

st(v)-— Gi;f

11

Algorithm 1: Betweenness centrality in unweighted graphs

THE ALGORTTHM IN CODE: STEP |

(We will return
to this)

STEP 1:
Shortest Path
Accumulation

o

Cgly] —0,vel:

for s € V do

S «— empty stack;

Plw] — empty list. w € V;

alf] —0.telV: afs] —1;

df] — =1, te V: dls] O

() — empty gquene:

enquene 5 — J;

while) not empty do
dequene v «— ();

push v — §;

foreach neighbor w of v do
S w found for the first time?
if dfw| < 0 then
enquene w —
dw] — dv] + 1:

end

Jf shortest path fo w via v¥
if djw| = d[v] + 1 then
alw] — alw] + alv):
append v — Plw]:

end
end
end

v — 0, vel,;

STEP 2: S 8 retwrns vertices in order of non-increasing distance from s
Pa.i rwi se while 5 not empty do
pop w — 5;
Dependency for v € Plu] do 8[v] —] + 2 - (1 + 8[u]):
Accumulation if w# s then Cglw] — Cglw] + 8w
end 12
5 end

HIRST STEP: COUNTING NUMBER OF SHORTEST PATHS

e Recall first construct, lowercase sigma O
e Originally accomplished with algebraic path counting

o Calculates number of paths of length shorter than network diameter

o Matrix multiplications were dominating factor

o Excess calculations; for betweenness centrality we only need number
of shortest paths between each pair of vertices

e Recall opportunity in sparsity of social networks
o Count shortest paths with traversal: BFS (or Dijkstra if weighed)

13

FIRST STEP: FORMALLZING PREDECESSORS ceraw exampie 2)

Create formal definition of a predecessor:

_ P,(v)={u eV : {u,v} € E, dg(s,v) =dg(s,u) +w(u,v)}

Read (informally) as the set of vertices where one last
edge (each {u, v}) connects each predecessor (each u)
with the successor v, where the weight of the last edge
added to the distance from s to each predecessor equals
the total distance from s to the successor.

14

FIRST STEP: PREDECESSOR RELATIONSHIP

e Predecessors allow us to work toward recursive solution
thanks to separating out a successor and final edge

_ P (v)={u eV : {u,v} € E, dg(s,v) =dg(s,u) + w(u,v)}

e Examine number of shortest paths to predecessors, and
notice it 1s the same as num shortest paths to successor

e Remember, lowercase sigma O 1is number of shortest paths

Osp — E O su-

; when
EP) dG(Se u) < dG(S"T.-‘) 15

FIRST STEP FINAL THOUGHTS BEFORE STEP 2

e Corollary 4 provides bounds on finding shortest paths for
all vertices using BFS and Dijkstra's as O(nm) and O(nm +
n"2logn)

o Run traversal n times (from n vertices)

e Now we will see Brandes’ innovation for step 2

16

Algorithm 1: Betweenness centrality in unweighted graphs

THE ALGORITHM IN CODE: STEP 2

(We will return
to this)

STEP 1:
Shortest Path
Accumulation

o

Cgly] —0,vel:

for s € V do

S «— empty stack;

Plw] — empty list. w € V;

alf] —0.telV: afs] —1;

df] — =1, te V: dls] O

() — empty gquene:

enquene 5 — J;

while) not empty do
dequene v «— ();

push v — §;

foreach neighbor w of v do
S w found for the first time?
if dfw| < 0 then
enquene w —
dw] — dv] + 1:

end

Jf shortest path fo w via v¥
if djw| = d[v] + 1 then
alw] — alw] + alv):
append v — Plw]:

end
end
end

v — 0, vel,;

STEP 2: S 8 retwrns vertices in order of non-increasing distance from s
Pa.i rwi se while 5 not empty do
pop w — 5;
Dependency for v € Plu] do 8[v] —] + 2 - (1 + 8[u]):
Accumulation if w# s then Cglw] — Cglw] + 8w
end 17
5 end

SECOND STEP: SUM ALL PAIR-DEPENDENCIES

e Recall the second step of accumulating pair-dependencies

gives us ost(v) betweenness centrality
Cp(v)=) . :
Ot (Freeman, 1977; Anthonisse, 1971)

s#v#EteV

e Top half: “number of shortest paths between s and t

paSS-i ng through V7 o ('U) . 0 if dG(Sat) < d(;(S._,'U) + dG('vat)
ST) gy - 0pr Otherwise

' ost(v)
e Single pair-dependency shortened to: 63,5(’0) _— SCTtst

Need accumulation for all shortest paths for each v

18

SECOND STEP: SUM PAIR-DEPENDENCIES. ..

e Introduce new notion of “dependency” to simplify all
pairwise-dependencies of vertex s to vertex t each v

e Recall that second construct (pair-dependency delta J) is
created from first construct (number of shortest path

counting sigma O)

Got(v) = L =D) =3 dulw

19

SECOND STEP: SUM PAIR-DEPENDENCIES. .. RECURSIVELY!

e This 1is the novel predecessor relationship leveraged
while performing BFS / Dijkstra on these sparse graphs
e The general case is covered by Theorem 6

Theorem 6 The dependency of s €V on any v € V obeys

S(v) = 30 (L bu(w)).

20

PROVING IMPORTANT THEOREM § (BRIEFLY)

Theorem 6 The dependency of s €V on anyv € V obeys

o
Su(0) = D (14 5w(w).
O-S'lL'
) w:vEP:(w)
e Extend pair-dependency to include an 1intermediary edge e {v,w} (from

predecessor v to successor w) as well as vertex v

(e)

(e)
0se(V) = Zést(v) = Z Z dst (v, {v,w}) = Z Zc?st(v, {v,w})

tev teV w:vePy(w) w: vEPs(w) tEV

e Let w be any vertex with v as a predecessor. Of the shortest paths from s
to w, many first go from s to v and then use {v, w}. The ratio times the

shortest paths from s to t that go through successor w equal the number of
shortest paths that contain {v, w} and v

21

PROVING THEOREM 6 (BRIEFLY) USING PREDECESSOR EDGE

¢ Theorem 6 Proof Continued

‘ (e) - if t =w
Ost(‘l’, {'U- w} = Osy | Ost(w) if ¢ 79 w

T 5w Tst

(e) (e)
Inserting this into (v, {v, Lb} Z ZO L, {v,w})
w:vEPs(w) tEV
(e) O Osp Ost(Ww
Z Z dst(v, {v,w}) = Z (_ + Z sv O, t(w)
O sw . O sw O st
w:vEPs(w) teV w:vE P, (w) teV\{w}

=| Y (+bew).

w:vE P (w) st

22

S

S

(Final Time)

Algorithm 1: Betweenness centrality in unweighted graphs

E ALGORITHM IN CODE:
EFINAL ANSWER

STEP 1:
Shortest Path
Accumulation

‘fm: v E P['n:f] do d[v| — d[v]
if w # s then Cglw] — Cglw| + §[w;

+ o

or |t

(14 d[w]);

Theorem 6 updates dependency
for predecessors by examining

successor,
B'C.

and accumulates

STEP 2:
Pairwise
Dependency
Accumulation

Cgly] —0,vel:

for s € V do

S «— empty stack:

Plw] «— empty list, w € V;

alf] —0.telV: afs] —1;

df] — =1, te V: dls] O

Q — empty quene;

enquene s — J;

while (} not empty do
dequene v «— ();

push v — §;

foreach neighbor w of v do
S w found for the first time?
if dw] < 0 then
enguene w —
dw] — dv] + 1:

end

/S shortest path to w via v¥
if djw| = d[v] + 1 then
alw] — aw| + alv):
append v — Plu]:

end
end

end

] —0,vel;
S 8 retwrns vertices in order of non-increasing distance from s
while 5 not empty do
pop w «— §;

for v € Plw| do d[v] — d[v] + 5{:-‘][1+ dw]):
if w# s then Cglw] — Cglw] + 8w

23

SYNTHETIC AND REAL DATASET EXPERIMENTAL RESULTS

tions currently in use. The experiment was performed on a Sun Ultra 10
SparcStation with 440 MHz clock speed and 256 MBytes main memory.

1000 T
The speed-up was also validated in practice, by analysis of an instance of
4,259 intravenous drug users with 61,693 directed weighted links, originating
800 from 197,216 unique contacts.* Not only because of running time, but also
because of the memory required to store the distance and shortest-paths
count matrices, betweenness centrality coulcl not be evaluated for this net-
800 | -)

work to date. The largest subnetwork
with 1,774 links (taking 25 minutes on
implementation determined the betwee 3
network in 448 seconds, using less than 8 MB\ tes of xueluur\

seconds

400

ll] e Computed previously uncomputable
dataset in 448 seconds, using less

"o 500 2000 than 8MB of memory

number of verlices

Figure 3: Seconds needed to the compute betweenness centrality index for
random undirected, unweighted graphs with 100 to 2000 vertices and den-
sities ranging from 10% to 90%

BASIC UNWEIGHTED ALGORTTHM EXTENSION

e Corollary 7 shows DAG extension (but not as relevant to
social network scope)

e Theorem 8 extends Theorem 6 for weighted graphs
(Dijkstra)

e Undirected graphs require Betweenness Centrality scores

divided by two
o Why?
o Shortest paths are considered twice

25

SUPPORTS OTHER CENTRALITY MEASURES (LIMITED EXPLANATION)

e Claims single-source shortest-path traversal supports
“easy computation” of other shortest path centrality
measures

e But only a one sentence explanation

Ce(v) = ﬁ closeness centrality (Sabidussi, 1966) (Valente and Foreman, 1998)
e o ey (D(G) + 1 —dg(v,1))
Ca(v) = maxiey do(@ D) graph centrality (Hage and Harary, 1995) - Cr(v) = (n—1)-D(G)
Cs(v)= Y oculv) stress centrality (Shimbel, 1953)
sFvEteV

26

QUESTIONS AND DISCUSSION

Some discussion questions:

Results from Sparc 440 Mhz/256MB, 200MHz Pentium Pro, 450MHz Pentium III
o What could be further optimized given modern hardware?

Paper claims all “standard centrality indices based on shortest paths can

.. be evaluated simultaneously.”

o What parts of the code would be strategically reused?
o What would be the challenges?

Paper algorithm code does not explicitly show shortest path calculations

in parallel.
o Do we think it is possible? Why or why not?

27

THANK YOU FOR LISTENING AND PARTICIPATING

e Paper “A Faster Algorithm for Betweenness Centrality” by Ulrik Brandes
(University of Konstanz)

e Presented by Taylor Andrews
o tandrews@mit.edu

28

http://www.algo.uni-konstanz.de/publications/b-fabc-01.pdf

