THE MORE THE MERRIER
EFFICIENT MULTI-SOURCE GRAPH TRAVERSAL

Then et Al. Jeremy Bogle

BACKGROUND

» Graph analytics

» Multi core machines
» Graph traversal on same graph from different sources
» Calculating graph centralities
» Enumerating neighborhoods for all vertices

» All-pairs shortest distance problem

BFS

» Textbook BFS

» Building block for other
graph traversals

» Max levels - diameter(QG)

» Random memory
accesses every time it
checks if a neighbor has
been visited

LT OO W=

Listing 1: Textbook BF'S algorithm.
Input: G, s
secen < {s}
visit < {s}
visitNext +— &

while visit # &
for each v € wisit
for each n € neighbors,,
if n & seen

seen < seen U {n}
visitNext « visitNext U {n}
do BFS computation on n

visit <— visitNext

visitNext < &

OPTIMIZING TEXTBOOK BFS

» Level by level parallelization
Work: T,(n) = ©(m+n)

Span: T.,(n) = O(d)

» Beamer et. All

Variable Description

» Bottom up approach - Explores

alpha Tuning parameter

based on unvisited nodes beta Tuning parameter
m_f # Edges in frontier
. m_u # Unexplored vertices
» Hybrid approach - Uses bottom up " FEPE——
for large frontiers, top up otherwise - Ferices
my > P = Crp
x
ng < 2 — C"BT

B

MOTIVATION

» Large graphs often must be
searched from various starting

nodes

» Lots of overlap when executing
BFS from multiple nodes

» Small world graphs have even
more overlap - large fanout,
each level grows rapidly

100% -

Percentage of Vertices
2 pr
= =

ra
(%2}
2

0% -

— i

T I I 1
1 2 3 4 5
BFS Level

1 1
& 7

Concurrent BFS
Traversals

2
s

1o
00

Figure 1: Percentage of vertex explorations that can
be shared per level across 512 concurrent BFSs.

SMALL WORLD GRAPHS

The distance between any two vertices

is very small compared to the size of the
graph, and the number of vertices
discovered in each iteration of the BFS
algorithm grows rapidly.

MS-BFS: EXAMPLE

G Initial State 1st BES Level 2nd BFS Level

seeny = {by } seeny = {b) seeng = {by,ba} | seeny = {Dy,ba} seeny = {by. bo}
o.o seeng — {ba)
{] t [hl})}

B={b. b} | T {7 (b2])
S —(1.2)

seeny = {bo} seeny = {by, by} E seens — {b,ba} scens — {b).ba}

seeng = {h1,ba} seeng = {by.ha}

(5, {01, D2 })]
(6, {by,b2})
(L, {&2})
(2,{01}]

T~

visit = <«

» Increase the dimensionality of textbook BFS to allow for
mUItlple BFS at once Listing 2: The MS-BFS algorithm.

1 Input: G,B, S
2 seen,, + {b;} for all b; € B

3 wisit U, 5{(s:, {b:})}

» Shared exploration of nodes 4 visitNert < 0

5

6 while visit # @

7 for each v in wisit

8 B, « @

9 for each (v',B’) € visit where v =v
B, «B,UB

» Finish all BFSs executions in parallel

11 for each n € neighbors,

12 D « B, \ seen,,

13 ifD#£2

14 visitNext « visitNext U {(n,D)}
15 seen,, « seen, UD

16 do BFS computation on n
17 visit + visitNext
18 visitNext « @

OPTIMIZATIONS FOR MS-BFS

» Bit operations

» Aggregated neighbor processing

» Direction optimized

» Neighbor prefetching

» Sharing heuristic

W~ U W =

OPTIMIZATIONS FOR MS-BFS

Listing 2: The MS-BFS algorithm.
Input: G, B, S
seeny, < {b;} for all b; € B
visit Ub.-ea{(s" {b:}}

visitNext « @

while visit # @
for each v in wvisit
B, « @
for each (v',B’) € visit where v' = v
B, —B,UB
for each n € neighbors,,
D « B, \ seen,
ifD#2
visitNext + visitNext U {(n,D)}
seen,, + seen, UD
do BFS computation on n
visit < visitNext
visitNext «+ @

Listing 3: MS-BFS using bit operations.

1 Input: G,B, S
2 for each b; € B

3
1

seen| 8; | ¢+~ 1 << b;
visit| 8; | 1 << b;

5 reset visitNext

6

7 while visit # @

8

9
10
11
12
13
14
15
16
17

fori=1,...,N
if visit|v;] = By, skip
for each n € neighbors(v;]
D « visit[v;] & ~seen[n]
if D # By
visitNext|n| « visitNezt[n| | D
seen|n| « seen|n| | D
do BFS computation on n
visit «— visitNext
reset visitNext

Listing 4: MS-BFS algorithm using ANP.

1 Input: G,B, S
2 for each b; € B

3
1

seen[8; | +~ 1 << b;
visit| 8; | - 1 << b;

5 reset visitNext

6

7 while visit # @

8

9
10
11
12
13
14
15
16
17
18
19
20

fori=1,...,N
if visit|v;] = Bg, skip
for each n € neighbors|v;]
visitNext[n] « visitNezt[n] | visit[v;

fori=1,....N
if wsitNea:t[v.-] = Bz, skip
visitNext|v;] «+ visitNext|v;] & ~seen[v;)
seen[v;] + seen|v;] | visitNext|v;)
if MitNezt[v.-] # Bz
do BFS computation on v;
visit + visitNext
reset visitNext

EVALUATION AND RESULTS

T
. g | // y U:Smu
» Running BFS from all nodes as 2l iz
number of vertices increases o / //;/ S

00 25 50 10.0
Vertices (n milcnc)

» Traversed edges per second Piguro & Data sae scalbilty reme

» Improvement benefits from various . %ﬁ’/ Sovn
g=l AT B

O pti m izati O n S ’;f/ ’ ‘K‘__._-r“”;r. = ninie
200 - T e ~+ Va8 BACL

m W @ ow
Coros
Figure 5: Multi-core scalability results.

e

NGOG ANP DOT WCL FF 4BIR
lining leckn que
Figure 7: Speedup achieved hy cumulatively apply-
ing different tuning techniques to MS-BFS.

&mnlm by Toc'ni:w

STRENGTHS

» Comparison with existing approaches

» Leverage existing optimizations

» Large scale evaluations

WEAKNESSES

» Must be overlapping during the same iterations

» No “memory” of previously searched nodes

» Evaluation on non “small-world” graphs

» Perform optimizations independently

» Evaluation in a distributed system

» MS-BFS with parallelization at each level

DISCUSSION

» What did you guys think were the strengths and
weaknesses?

» On what types of graphs is MS-BFS NOT useful

» How could it be improved to be useful on these
graphs?

» How does MS-BFS perform compared to textbook BFS
in these scenarios

