Parallel graph decompositions using random shifts

Gary L. Miller, Richard Peng, Shen Chen Xu

Presenter: Jessica Shi

6.886 Algorithm Engineering Spring 2019, MIT

Introduction

Graph decomposition

- Graph decomposition: Partition vertices of a graph such that:
 - Subsets satisfy some connectivity property
 - There are few edges between subsets
- **Diameter**: Maximum length of a shortest path between any two vertices
- Low diameter graph decomposition

Motivation

- Key subroutine in many (distributed) algorithms:
 - Low-stretch embedding of graphs into trees ^[1]
 - Shortest path approximations ^[2]
 - Symmetric diagonally dominant (SDD) linear system solvers ^[3]
 - Applications: Max flow, negative-length shortest path ^[4]
 - Issue: Polylog (log^{O(1)} n) work factor b/c of low diameter decomposition alg to generate tree embeddings

- ^[2] Cohen. 2000.
- ^[3] Blelloch et al. 2011.
- ^[4] Christiano et al. 2011; Daitch and Spielman. 2008.

Jessica Shi

^[1] Alon et al. 1995.

Aside: Diameter

- Strong diameter: Diameter of the induced subgraph on the subset S
- Weak diameter: Diameter of the subset *S* where shortest paths may use vertices outside of *S*
 - Quadratic work factor for parallel low diameter decompositions ^[5]
- Note: Take "diameter" to mean "strong diameter"

Figure: The strong diameter of the blue vertices is 3, but the weak diameter is 2.

^[5] Awerbuch et al. 1992.

Main results

Main problem

- A (β, d) decomposition is a partition of V into subsets S_i such that
 - Each S_i has diameter ≤ d
 - Number of edges between subsets $\leq \beta m$.
- Note: Usually (optimally), $d = O(\log n/\beta)$

Related work

- Sequential: $(\beta, O(\log n/\beta))$ decomposition:
 - O(m) time
- Previous ^[6]: $(\beta, O(\log^4 n/\beta))$ decomposition:
 - Expected $O(\log^3 n/\beta)$ depth, $O(m \log^2 n)$ work
- This work: $(\beta, O(\log n/\beta))$ decomposition $(\beta \le 1/2)$:
 - Expected $O(\log^2 n/\beta)$ depth, O(m) work
 - Work-efficient!

^[6] Blelloch et al. 2011.

Sequential algorithm (overview)

- Choose a vertex v and start a subset ("ball") $S_v = \{v\}$
- Use BFS to add vertices to S_v
- Stop when (# edges on the boundary of S_v) $< \beta \cdot (\# \text{ of edges in } S_v)$
- Delete all vertices in S_v
- Repeat until all vertices have been deleted (partitioned)

Sequential algorithm (crossing edge analysis)

- All subsets S_ν satisfy (# edges on the boundary of S_ν) < β · (# of edges in S_ν) upon creation
- \therefore only βm edges total cross subsets

Sequential algorithm (diameter analysis)

- Let *i* denote BFS iterations
- Let m_i denote # edges in S_v after step i
- At step i:
 - Increase diameter by at most 2
 - Must have added all vertices from step (i 1):
 - # edges on frontier at start of step $(i-1) \geq \beta m_{i-2}$

•
$$m_{i-1} \geq (1+\beta) \cdot m_{i-2}$$

Since diameter increases at most linearly with *i*, the diameter of a subset is bounded by O(log n/β)

Blelloch et al.'s algorithm (sketch)

- Randomly sample a subset of vertices to be "centers"
- Grow balls starting from the centers in parallel
- If two balls overlap, choose which ball to place overlapping vertices based off of distance to center (with an additive random shift factor)
- Repeat until all vertices have been partitioned

This algorithm

- Each $u \in V$ picks δ_u indep. from an exp. distr. w/mean $1/\beta$
- Let δ_{\max} denote the max δ_u
- Start an instance of parallel BFS, with v s.t. $\delta_{max} = \delta_v$
- When the vertex at the head of the queue has dist $> \delta_{max} \delta_u$, start parallel BFS with u (add to queue) if it has not yet been visited (as a center)
- Assign each vertex u to the center that visited it in the BFS
- Note: Think of δ_u as randomized start times for u to begin its own ball

Preliminaries

Preliminaries

- Simplification: Take diameter to be the max distance from a designated center u of subset S_u to any v ∈ S_u
 - Bounds diameter up to factor of 2
- Shifted distance: Define dist $_{-\delta}(u, v) = dist(u, v) \delta_u$

Preliminaries

• Exponential distribution:

• PDF:
$$\operatorname{Exp}(\gamma) = f(x, \gamma) = \begin{cases} \gamma e^{-\gamma x} & \text{for } x \ge 0, \\ 0 & \text{otherwise} \end{cases}$$

• CDF: $F(x, \gamma) = \Pr[\operatorname{Exp}(\gamma) \le x] = \begin{cases} 1 - e^{-\gamma x} & \text{for } x \ge 0, \\ 0 & \text{otherwise} \end{cases}$

- Mean: $1/\gamma$
- i^{th} order statistic of RV $\{X_i\}_{i \in [n]}$: $X_{(i)}^n$ = value of i^{th} smallest
 - $X_{(1)}^n$ and consecutive differences $X_{(k+1)}^n X_{(k)}^n$ are indep.
 - PDF of $X_{(1)}^n$: Exp $(n\gamma)$
 - PDF of $X_{(k+1)}^n X_{(k)}^n$: $Exp((n-k)\gamma)$

Analysis (correctness)

This algorithm

- Each $u \in V$ picks δ_u indep. from an exp. distr. w/mean $1/\beta$
- Let δ_{\max} denote the max δ_u
- Start an instance of parallel BFS, with v s.t. $\delta_{\max} = \delta_v$
- When the vertex at the head of the queue has dist $> \delta_{max} \delta_u$, start parallel BFS with u (add to queue) if it has not yet been visited (as a center)
- Assign each vertex u to the center that visited it in the BFS
- Note: Think of δ_u as randomized start times for u to begin its own ball

Modified algorithm

- Each $u \in V$ picks δ_u indep. from $Exp(\beta)$
- Assign each vertex v to S_u where u minimizes dist_{$-\delta$}(u, v) (break ties lexicographically)
- These form the partitions S_u

Modified algorithm (diameter analysis)

Lemma

If $v \in S_u$ and v' is the last vertex on the shortest path from u to v, then $v' \in S_u$ as well.

Proof.

Assume $v' \in S_{u'}$:

- Shortest path: $dist_{-\delta}(u, v) = dist_{-\delta}(u, v') + 1$
- Adjacent: $dist_{-\delta}(u', v) \leq dist_{-\delta}(u', v') + 1$

Cases:

- v' closer to u' than to $u \Rightarrow v$ is closer to u' than to u, so $v \in S_{u'}$
- v' is the same distance from u' and u, but u' is lexicographically before $u \Rightarrow v$ is the same distance from u' and u, so $v \in S_{u'}$

Modified algorithm (diameter analysis)

• Note: Since we may have $v \in S_v$, diameter is bounded above by $\delta_{\max} = \max_u \delta_u$

Lemma

The expected value of the max shift is H_n/β , where H_n is the nth harmonic number. With high probability (by failure parameter d), $\delta_u \leq O(\log n/\beta)$.

Proof.

• Expected value of max shift: Sum over differences of order statistics:

•
$$E[\delta_{\max}] = E[\delta_{(n)}^n] = \frac{1}{\beta} \sum_{i=1}^n \frac{1}{i} = H_n/\beta$$

• Bound all δ_u : Use CDF and union bound:

•
$$\Pr[\delta_u \ge (d+1) \cdot \ln n/\beta] \le n^{-(d+1)}$$

Lemma

Let edge (u, v) have midpoint w. If $u \in S_{u'}$ and $v \in S_{v'}$ $(u' \neq v')$, then $dist_{-\delta}(u', w)$ and $dist_{-\delta}(v', w)$ are within 1 of the min shifted distance to w.

Proof.

- Let the arg min shifted distance to w be w'
- Since w to u is 1/2, dist $_{-\delta}(w', u) \leq \operatorname{dist}_{-\delta}(w', w) + 1/2$

• If
$${\sf dist}_{-\delta}(u',w)>{\sf dist}_{-\delta}(w',w)+1$$
,

$$\begin{split} \operatorname{dist}_{-\delta}(u',u) &\geq \operatorname{dist}_{-\delta}(u',w) - 1/2 \ &> \operatorname{dist}_{-\delta}(w',w) + 1/2 \ (ext{substitute}) \ &\geq \operatorname{dist}_{-\delta}(w',u), \end{split}$$

but u' minimizes shifted dist to u

- Main idea: For every edge (*u*, *v*):
 - Consider all shifted distances to midpoint w
 - If the min + second min of these aren't within 1 of each other, then u and v must be in same subset
 - Bound the probability p that min + second min are within 1 of each other
- .:. pm is expected number of edges across subsets
- Represent shifted distances as d_i δ_i, where d_i is arbitrary and δ_i is from Exp(β)

- Proof sketch:
 - *d_i* indicates when a light bulb is turned on (time goes from high to low), δ_i is lifespan
 - $\min(d_i \delta_i) = \text{time when last light burns out}$
 - $\bullet\,$ Want to bound diff $\Delta\,\,b/w$ when last light burns out + second last light burns out
 - Exp distr is memoryless \Rightarrow last light follows exp distr after second last light burns out
 - \therefore $\Pr[\Delta < c]$ is bounded by CDF $1 e^{-c\beta} \approx c\beta$ (for small $c\beta$)
 - Case: If last light not on yet when second last light dies, $Pr[\Delta < c]$ can only be less than the above

Lemma

$$Pr[\Delta \leq c]$$
 is at most $O(\beta c)$.

Proof.

- More convenient to consider $-(d_i \delta_i) \Rightarrow \text{let } d'_i = -d_i$
- Let $X_i = d'_i + \delta_i d'_1$, let $X_{(i)}$ be i^{th} order stat of X_j

• Note: X_i follows exp distr w/mean $1/\beta$

• WTS:
$$Pr[X_{(n)} - X_{(n-1)} > c] \ge e^{-\beta c}$$

• For $S \subseteq [n]$, let ε_S be the event where $X_i \ge 0$ iff $i \in S$

•
$$Pr[X_{(n)} - X_{(n-1)} > c] = \sum_{S} Pr[X_{(n)} - X_{(n-1)} > c|\varepsilon_{S}]Pr[\varepsilon_{S}]$$

Proof.

- Since $X_1 = \delta_1 \ge 0$, if $1 \notin S$, then $\Pr[\varepsilon_S] = 0$
- Case: |S| = 1: $S = \{1\}$:

•
$$Pr[X_1 > c] \geq e^{-\beta c}$$

• Since $X_{(n)} \ge X_1$ and $X_{(n-1)} < 0$, we have

$$\Pr[X_{(n)} - X_{(n-1)} > c | \varepsilon_S] \ge e^{-eta c}$$

• Case: $|S| \ge 2$:

• By order statistics, $\Pr[X_{(n)} - X_{(n-1)} > c | arepsilon_{\mathcal{S}}] \geq e^{-eta c}$

In total:

$$\Pr[X_{(n)} - X_{(n-1)} > c] \ge e^{-\beta c} \Rightarrow \Pr[\Delta < c] \le 1 - e^{-\beta c} < \beta c$$

Analysis (work/depth)

This algorithm

- Each $u \in V$ picks δ_u indep. from an exp. distr. w/mean $1/\beta$
- Let δ_{\max} denote the max δ_u
- Start an instance of parallel BFS, with v s.t. $\delta_{max} = \delta_v$
- When the vertex at the head of the queue has dist $> \delta_{max} \delta_u$, start parallel BFS with u (add to queue) if it has not yet been visited (as a center)
- Assign each vertex u to the center that visited it in the BFS
- Note: Think of δ_u as randomized start times for u to begin its own ball

Implementation improvements

- Simulate $-\delta_u$ shifts by using super source *s* with dist $-\delta_u$ to each *u*
- $\bullet\,$ Fix negative edge lengths by adding δ_{\max}
- Only non-integral path lengths are from s
 - Use fractional parts from s as tie-breakers
 - Can also replace these with a random permutation
- Delayed processing of edges so can use unweighted BFS

Work/depth analysis

- Generating δ_u : O(1) depth and O(n) work
- BFS: $O(\Delta \log n)$ depth and O(m) work (where Δ is max distance) ^[7]
 - Each center to vert in subset has max distance $O(\log n/\beta)$
 - In total: $O(\log^2 n/\beta)$ depth and O(m) work
- Verify correctness: $O(\log n)$ depth and O(m) work
- In total: $O(\log^2 n/\beta)$ depth and O(m) work

^[7] Klein and Subramanian. 1997.

Conclusion

Future work

- Actual implementation?
- Weighted low diameter decomposition
 - Difficult to bound depth
- Other kinds of decompositions, e.g., low weak diameter block decomposition
 - $O(\log^2 n)$ depth and $O(n \log^2 n)$ work for $(\log n, \log n)$ decom ^[8]

Thank you!