
Parallel graph decompositions using random shifts

Gary L. Miller, Richard Peng, Shen Chen Xu

Presenter: Jessica Shi

6.886 Algorithm Engineering
Spring 2019, MIT



Introduction

Introduction

Jessica Shi Parallel graph decompositions 1 / 43



Introduction

Graph decomposition

Graph decomposition: Partition vertices of a graph such that:

Subsets satisfy some connectivity property

There are few edges between subsets

Diameter: Maximum length of a shortest path between any two
vertices

Low diameter graph decomposition
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Introduction

Motivation

Key subroutine in many (distributed) algorithms:

Low-stretch embedding of graphs into trees [1]

Shortest path approximations [2]

Symmetric diagonally dominant (SDD) linear system solvers [3]

Applications: Max flow, negative-length shortest path [4]

Issue: Polylog (logO
(
1
)
n) work factor b/c of low diameter

decomposition alg to generate tree embeddings

[1] Alon et al. 1995.
[2] Cohen. 2000.
[3] Blelloch et al. 2011.
[4] Christiano et al. 2011; Daitch and Spielman. 2008.
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Introduction

Aside: Diameter

Strong diameter: Diameter of the induced subgraph on the subset S

Weak diameter: Diameter of the subset S where shortest paths may
use vertices outside of S

Quadratic work factor for parallel low diameter decompositions [5]

Note: Take “diameter” to mean “strong diameter”

Figure: The strong diameter of the blue vertices is 3, but the weak diameter is 2.

[5] Awerbuch et al. 1992.
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Main results

Main problem

A (β, d) decomposition is a partition of V into subsets Si such that

Each Si has diameter ≤ d

Number of edges between subsets ≤ βm.

Note: Usually (optimally), d = O
(

log n/β
)
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Main results

Related work

Sequential:(β,O
(

log n/β
)
) decomposition:

O
(
m
)

time

Previous [6]: (β,O
(

log4 n
/
β
)
) decomposition:

Expected O
(

log3 n
/
β
)

depth, O
(
m log2 n

)
work

This work: (β,O
(

log n/β
)
) decomposition (β ≤ 1/2):

Expected O
(

log2 n
/
β
)

depth, O
(
m
)

work

Work-efficient!

[6] Blelloch et al. 2011.
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Main results

Sequential (ball-growing) algorithm (β = 1/2)
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Main results
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Main results

Sequential algorithm (overview)

Choose a vertex v and start a subset (“ball”) Sv = {v}
Use BFS to add vertices to Sv

Stop when (# edges on the boundary of Sv ) < β · (# of edges in Sv )

Delete all vertices in Sv

Repeat until all vertices have been deleted (partitioned)
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Main results

Sequential algorithm (crossing edge analysis)

All subsets Sv satisfy (# edges on the boundary of Sv ) < β · (# of
edges in Sv ) upon creation

∴ only βm edges total cross subsets
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Main results

Sequential algorithm (diameter analysis)

Let i denote BFS iterations

Let mi denote # edges in Sv after step i

At step i :

Increase diameter by at most 2

Must have added all vertices from step (i − 1):

# edges on frontier at start of step (i − 1) ≥ βmi−2

mi−1 ≥ (1 + β) ·mi−2

Since diameter increases at most linearly with i , the diameter of a
subset is bounded by O

(
log n/β

)
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Main results

Blelloch et al.’s algorithm (sketch)

Randomly sample a subset of vertices to be “centers”

Grow balls starting from the centers in parallel

If two balls overlap, choose which ball to place overlapping vertices
based off of distance to center (with an additive random shift factor)

Repeat until all vertices have been partitioned
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Main results

This algorithm

Each u ∈ V picks δu indep. from an exp. distr. w/mean 1/β

Let δmax denote the max δu

Start an instance of parallel BFS, with v s.t. δmax = δv

When the vertex at the head of the queue has dist > δmax − δu, start
parallel BFS with u (add to queue) if it has not yet been visited (as a
center)

Assign each vertex u to the center that visited it in the BFS

Note: Think of δu as randomized start times for u to begin its own
ball
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Preliminaries

Preliminaries

Simplification: Take diameter to be the max distance from a
designated center u of subset Su to any v ∈ Su

Bounds diameter up to factor of 2

Shifted distance: Define dist−δ(u, v) = dist(u, v)− δu
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Preliminaries

Preliminaries

Exponential distribution:

PDF: Exp(γ) = f (x , γ) =

{
γe−γx for x ≥ 0,

0 otherwise

CDF: F (x , γ) = Pr [Exp(γ) ≤ x ] =

{
1− e−γx for x ≥ 0,

0 otherwise

Mean: 1/γ

i th order statistic of RV {Xi}i∈[n]: X n
(i) = value of i th smallest

X n
(1) and consecutive differences X n

(k+1) − X n
(k) are indep.

PDF of X n
(1): Exp(nγ)

PDF of X n
(k+1) − X n

(k): Exp((n − k)γ)
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Analysis (correctness)

This algorithm

Each u ∈ V picks δu indep. from an exp. distr. w/mean 1/β

Let δmax denote the max δu

Start an instance of parallel BFS, with v s.t. δmax = δv

When the vertex at the head of the queue has dist > δmax − δu, start
parallel BFS with u (add to queue) if it has not yet been visited (as a
center)

Assign each vertex u to the center that visited it in the BFS

Note: Think of δu as randomized start times for u to begin its own
ball
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Analysis (correctness)

Modified algorithm

Each u ∈ V picks δu indep. from Exp(β)

Assign each vertex v to Su where u minimizes dist−δ(u, v) (break ties
lexicographically)

These form the partitions Su

Jessica Shi Parallel graph decompositions 30 / 43



Analysis (correctness)

Modified algorithm (diameter analysis)

Lemma

If v ∈ Su and v ′ is the last vertex on the shortest path from u to v , then
v ′ ∈ Su as well.

Proof.

Assume v ′ ∈ Su′ :

Shortest path: dist−δ(u, v) = dist−δ(u, v ′) + 1

Adjacent: dist−δ(u′, v) ≤ dist−δ(u′, v ′) + 1

Cases:

v ′ closer to u′ than to u ⇒ v is closer to u′ than to u, so v ∈ Su′

v ′ is the same distance from u′ and u, but u′ is lexicographically
before u ⇒ v is the same distance from u′ and u, so v ∈ Su′
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Analysis (correctness)

Modified algorithm (diameter analysis)

Note: Since we may have v ∈ Sv , diameter is bounded above by
δmax = maxu δu

Lemma

The expected value of the max shift is Hn/β , where Hn is the nth harmonic
number. With high probability (by failure parameter d), δu ≤ O

(
log n/β

)
.

Proof.

Expected value of max shift: Sum over differences of order statistics:

E [δmax] = E [δn(n)] = 1
β

∑n
i=1

1
i = Hn/β

Bound all δu: Use CDF and union bound:

Pr [δu ≥ (d + 1) · ln n/β ] ≤ n−(d+1)
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Analysis (correctness)

Modified algorithm (crossing edge analysis)

Lemma

Let edge (u, v) have midpoint w . If u ∈ Su′ and v ∈ Sv ′ (u′ 6= v ′), then
dist−δ(u′,w) and dist−δ(v ′,w) are within 1 of the min shifted distance to
w .

Proof.

Let the arg min shifted distance to w be w ′

Since w to u is 1/2, dist−δ(w ′, u) ≤ dist−δ(w ′,w) + 1/2

If dist−δ(u′,w) > dist−δ(w ′,w) + 1,

dist−δ(u′, u) ≥ dist−δ(u′,w)− 1/2

> dist−δ(w ′,w) + 1/2 (substitute)

≥ dist−δ(w ′, u),

but u′ minimizes shifted dist to u
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Analysis (correctness)

Modified algorithm (crossing edge analysis)

Main idea: For every edge (u, v):

Consider all shifted distances to midpoint w

If the min + second min of these aren’t within 1 of each other,
then u and v must be in same subset

Bound the probability p that min + second min are within 1 of
each other

∴ pm is expected number of edges across subsets

Represent shifted distances as di − δi , where di is arbitrary and δi is
from Exp(β)
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Analysis (correctness)

Modified algorithm (crossing edge analysis)

Proof sketch:

di indicates when a light bulb is turned on (time goes from high
to low), δi is lifespan

min(di − δi ) = time when last light burns out

Want to bound diff ∆ b/w when last light burns out + second
last light burns out

Exp distr is memoryless ⇒ last light follows exp distr after
second last light burns out

∴ Pr [∆ < c] is bounded by CDF 1− e−cβ ≈ cβ (for small cβ)

Case: If last light not on yet when second last light dies,
Pr [∆ < c] can only be less than the above
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Analysis (correctness)

Modified algorithm (crossing edge analysis)

Lemma

Pr [∆ ≤ c] is at most O
(
βc
)
.

Proof.

More convenient to consider −(di − δi )⇒ let d ′i = −di
Let Xi = d ′i + δi − d ′1, let X(i) be i th order stat of Xj

Note: Xi follows exp distr w/mean 1/β

WTS: Pr [X(n) − X(n−1) > c] ≥ e−βc

For S ⊆ [n], let εS be the event where Xi ≥ 0 iff i ∈ S

Pr [X(n) − X(n−1) > c] =
∑

S Pr [X(n) − X(n−1) > c |εS ]Pr [εS ]
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Analysis (correctness)

Modified algorithm (crossing edge analysis)

Proof.

Since X1 = δ1 ≥ 0, if 1 /∈ S , then Pr [εS ] = 0

Case: |S | = 1: S = {1}:
Pr [X1 > c] ≥ e−βc

Since X(n) ≥ X1 and X(n−1) < 0, we have

Pr [X(n) − X(n−1) > c |εS ] ≥ e−βc

Case: |S | ≥ 2:

By order statistics, Pr [X(n) − X(n−1) > c |εS ] ≥ e−βc

In total:
Pr [X(n) − X(n−1) > c] ≥ e−βc ⇒ Pr [∆ < c] ≤ 1− e−βc < βc
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Analysis (work/depth)

This algorithm

Each u ∈ V picks δu indep. from an exp. distr. w/mean 1/β

Let δmax denote the max δu

Start an instance of parallel BFS, with v s.t. δmax = δv

When the vertex at the head of the queue has dist > δmax − δu, start
parallel BFS with u (add to queue) if it has not yet been visited (as a
center)

Assign each vertex u to the center that visited it in the BFS

Note: Think of δu as randomized start times for u to begin its own
ball
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Analysis (work/depth)

Implementation improvements

Simulate −δu shifts by using super source s with dist −δu to each u

Fix negative edge lengths by adding δmax

Only non-integral path lengths are from s

Use fractional parts from s as tie-breakers

Can also replace these with a random permutation

Delayed processing of edges so can use unweighted BFS
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Analysis (work/depth)

Work/depth analysis

Generating δu: O
(
1
)

depth and O
(
n
)

work

BFS: O
(
∆ log n

)
depth and O

(
m
)

work (where ∆ is max distance) [7]

Each center to vert in subset has max distance O
(

log n/β
)

In total: O
(

log2 n
/
β
)

depth and O
(
m
)

work

Verify correctness: O
(
log n

)
depth and O

(
m
)

work

In total: O
(

log2 n
/
β
)

depth and O
(
m
)

work

[7] Klein and Subramanian. 1997.
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Conclusion

Conclusion

Jessica Shi Parallel graph decompositions 42 / 43



Conclusion

Future work

Actual implementation?

Weighted low diameter decomposition

Difficult to bound depth

Other kinds of decompositions, e.g., low weak diameter block
decomposition

O
(
log2 n

)
depth and O

(
n log2 n

)
work for (log n, log n) decom [8]

[8] Linial and Saks. 1991.
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Conclusion

Thank you!
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