A Framework for Processing Large
Graphs in Shared Memory

Julian Shun

Based on joint work with Guy Blelloch and Laxman Dhulipala
(Work done at Carnegie Mellon University)

What are graphs”?

Edge

Vertex Vertex

[brary of Congres:Cauntry
Studias

(Hows SKGlF Works) g Findar,

e Caalogq By coms Sk |
> Elament o Style (1918)

4 -

.

& _
=

e e oy a5
Tians

o7 1 & Conformance v ab
ccesibily
pr

(Klingeleifae) Fress6 (The GIMD)

Graph Data is Everywhere!

- Can contain up to billions of vertices and edges

- Need simple, efficient, and scalable ways to
analyze them

Efficient Graph Processing

Use parallelism

2 > \\,

Design efficient algorithms

Breadth-first search Single-source shortest paths
Betweenness centrality Eccentricity estimation
Connected components (Personalized) PageRank

Write/optimize code for each application
Build a general framework

Ligra Graph Processing Framework

EdgeMap VertexMap

Breadth-first search Single-source shortest paths
Betweenness centrality Eccentricity estimation
Connected components (Personalized) PageRank
Triangle counting Local graph clustering
K-core decomposition Biconnected components
Maximal independent set Collaborative filtering

Set cover

Simplicity, Performance, Scalability

. R
Graph Processing Systems

- Existing: Pregel/Giraph/GPS, GraphLab, Pegasus,
Knowledge Discovery Toolbox, GraphChi, etc.

- Our system: Ligra - Lightweight graph processing
system for shared memory

Takes advantage of “frontier-based”
nature of many algorithms
(active set is dynamic and often small)

Breadth-first Search (BFS)

- Compute a BFS tree rooted at source r containing
all vertices reachable from r

Applications

Eccentricity estimation

Web crawlers

Cycle detection

L. T
o

- Can process each frontier in parallel
- Race conditions, load balancing

7

Steps for Graph Traversal wany g

sal
algorithms do‘gﬂli
- Operate on a subset of vertices VertexSubset

- Map computation over subset of edges in parallel }
- Return new subset of vertices

- Map computation over subset of vertices in parallel \ertexiiap

We built the Ligra abstraction for
these kinds of computations

EdgeMap

Think with flat data-parallel operators

Abstraction enables optimizations
(hybrid traversal and graph compression)

Breadth-first Search in Ligra

parents = {-1, ..., -1}; //-1 indicates “unexplored”

procedure UPDATE(s, d):
return compare_and_swap(parents[d], -1, s);

procedure COND(v):
return parents|v] == -1; //checks if “unexplored”
procedure BFS(G, r): frontier

parents[r] = r;

frontier = {r}; //VertexSubset ¢ o \%

while (size(frontier) > 0): T T F T T
frontier = EDGEMAP(G, frontier, UPDATE, COND);

Actual BFS code in Ligra

!\Sparsg)oRQe_nge/Edgel\/lap?

~Frontier

 Dense method better when
frontier is large and many
vertices have been visited

« Sparse (traditional) method
better for small frontiers

 Switch between the two
methods based on frontier
size [Beamer et al. SC '12]

Limited to BFS?

. B
EdgeMap

procedure EDGEMAP(G, frontier, Update, Cond):
if (size(frontier) + sum of out-degrees > threshold) then:
return EDGEMAP_DENSE(G, frontier, Update, Cond);
else:
return EDGEMAP_SPARSE(G, frontier, Update, Cond);

" 4

Loop through incoming edges of
“‘unexplored” vertices (in parallel),
breaking early if possible

* More general than just BFS!

* Generalized to many other problems

* For example, betweenness centrality, connected components,
sparse PageRank, shortest paths, eccentricity estimation,
graph clustering, k-core decomposition, set cover, etc.

» Users need not worry about this

Loop through outgoing edges
of frontier vertices in parallel

Frontier-based approach enables
hybrid traversal

Twitter graph (41M vertices, 1.5B edges)

- a
o N b

40-core running time (seconds)
o N BEN o oo

30.7

20.7

BFS

Betweenness
Centrality

Connected
Components

Eccentricity
Estimation

m Dense

m Sparse

m Hybrid
(switching
between sparse
and dense using

default threshold
of |E|/20)

PageRank

VertexMap

VertexSubset

bool f(v){
data[v] = data[v] + 1;
return (data[v] == 1);

}

VertexSubset

N
PageRank in Ligra

p_curr ={1/|V|, ..., 1/|V|}; p_next =10, ..., O}; diff = {}; error =;

procedure UPDATE(s, d):
atomic_increment(p_next[d], p_curr[s] / degree(s));
return 1;

procedure COMPUTE(i):
p_next[i] = a - p_next[i] + (1- a) - (1/|V|]);
diff[i] = abs(p_next[i] — p_curr]i]);
p_curr[i] = 0;
return 1;

procedure PageRank(G, aq, €):

frontier = {0, ..., |V|-1};

error = sum of diff entries;

swap(p_curr, p_next)
return p_curr;

I
PageRank

- Sparse version?

- PageRank-Delta: Only update vertices whose PageRank
value has changed by more than some A-fraction
(discussed in PowerGraph and McSherry WWW ‘05)

PageRank-Delta in Ligra

PR[i] = {1/|V|, ..., 1/|V|};
nghSum = {0, ..., O};
Change = {}; //store changes in PageRank values

procedure UPDATE(s, d): //passed to EdgeMap
atomic_increment(nghSum[d], Change[s] / degree(s));
return 1;

procedure COMPUTE(i): //passed to VertexMap
Changeli] = a - nghSum[i];
PR[i] = PR]i] + Change]i];
return (abs(Changeli]) > A); //check if absolute value of change is big enough

Performance of Ligra

N
Ligra BFS Performance

Twitter graph (41M vertices, 1.5B edges)

04 180
' 160
§0.25 - 140
()]
§ 0.2 - Ligra (40-core 9 120
. (&]
L machine) - 100
.°§’ 0.15 - o 80
© 0.1 - 5 60
[= m Hand-written 40
S$0.05 - Cilk/OpenMP (40-core 20 -
e machine)
0
0 - i
BFS BFS

- Comparing against hybrid traversal BFS code by Beamer et al.

N
Ligra PageRank Performance

Twitter graph (41M vertices, 1.5B edges)

N
AN
|
o
o

m PowerGraph (64 x 8-
w12 - cores) 70
=
§10 . = PowerGraph (40-core @ 60 1
8 g machine) 890
Q S
040 -

:g 6 - m Ligra (40-core "
> 1 machine) .g 30 -
£ : =190 -
S 2 m Hand-written
L4 Cilk/OpenMP (40-core 10 4

0 - machine) 0 -

Page Rank (1 iteration) Page Rank

- Easy to implement “sparse” version of PageRank in Ligra

Connected Components Performance

Twitter graph (41M vertices, 1.5B edges)

Largestpubliely— 00 -
’UT 1 ‘:4 . 7]
o
_d§, .Y 72-core machine with 1TB RAM Ligra Running time
© BFS
g 1
= Connected components 42s
e 0.5 1 iteration PageRank

0 - ore nr 0 +——
Connected Components Connected Components

- Ligra’s performance is close to hand-written code
- Faster than best existing system

- Subsequent systems have used Ligra’s abstraction and hybrid

traversal idea, e.g., Galois [SOSP "13], Polymer [PPoPP "15],
Gunrock [PPoPP "16], Gemini [OSDI "16], GraphGrind [ICS “17],

Grazelle [PPoPP ‘18]

- 2z
Large Graphs

Amazon EC2

xlexlarge
xle.2xlarge
x1e.4xlarge
x1e.8xlarge
x1e.16xlarge

x1e.32xlarge

vCPU ECU [Memory (GiB)\
4 12 122
8 23 244
16 47 488
32 91 976
64 179 1952
128 340 3904)
—

Instance Storage (GB) Linux/UNIX Usage
1x120SSD $0.834 per Hour
1x 240 5SD $1.668 per Hour
1x 480 SSD $3.336 per Hour

1x 960 $6.672 per Hour
1x 1920 SSD $13.344 per Hour
2x19205SD $26.688 per Hour

* Most can fit on commodity shared memory machine

i

I
I
I
I

HEEHEH

0 e Mo B e

Example
Dell PowerEdge R930:

Up to 96 cores and 6 TB of RAM

B
What if you don't have or can't afford that

much memory?

Running Time

Memory Required

Graph Compression

Ligra+: Adding Graph
Compression to Ligra

.
Ligra+: Adding Graph Compression to Ligra

[Interface \

(\/G\raph < Use compressed representa’tan,\
VertexS?bs;t < —Same as before B
EdgeMap < Decode edges on-the-fly
\ VertexMap Same as before

- Same interface as Ligra
- All changes hidden from the user!

¥
Graph representatlon

"‘\ , ™\
Vertex IDs \;O ’ 1 \s2=' 3
Offsets 0 4 5 11
l \\ ——3
O" O"\ O"\
Edges 2 7.9 16 0 ‘1, 6 9 12
lo Ne e Na e
2-0=2 7-2=5 1-2=-
Compressed
Edges | 2 | 5 | 2 | 7T |4 4| 5 | 3|3

Sort edges and encode differences

Graph reordering to improve locality

7
Variable-length codes

- k-bit codes

- Encode value in chunks of k bits
- Use k-1 bits for data, and 1 bit as the “continue” bit

- Example: encode “401” using 8-bit (byte) code

-In binary: ERERRIRIERCICIEDER
\—

Nﬂs for data

1010110001 0000011
P

“continue” bit

- ®
Encoding optimization

- Another idea: get rid of “continue” bits

X4 X2 X3 X4 X5 Xe X7 Xg | "=""*"

Number of bytes
required to encode
each integer

1 2 2 2 2 2 2 2

Use run-length encoding

Header
ol1lol11]ofo[1]] | .
T \ Integers in group
encoded in byte chunks
Number of bytes Size of group
per integer (max 64)

* Increases space, but makes decoding cheaper (no branch
misprediction from checking “continue” bit)

. B’
Ligra+: Adding Graph Compression to Ligra

[Interface \

=
'\

- Same interface as Ligra

(\ (iaph < Use compressed representa’tio_n,\
VertexSubset < - Same as before
—_—— — T~ -
C EigeMap < Decode edges on-thiﬂy’ D
_ VertexMap 4 — Same as before

- All changes hidden from the user!

-~

VertexSubset

~

@/

@
()

/

\

Modifying EdgeMap

- Processes outgoing edges of a subset of vertices

OANg

2 |5 | 2 7,9 2 1|3 3
4 | 6 3|1 |3 5|6 | 2
5 10 | 2

All vertices processed
30 | 5 in parallel
16| 2 19 | 1 | 4 | 2 | 5 | 3

What about high-degree vertices?

Handling high-degree vertices

High-degree
vertex
12 4 | 3 16 2 |1 5 8 |19 4 1 (|23 14 12| 1 9 10 ||3 5
Chunks of size T

P
-1} 2 | 4 | 3
-t

16

2

X

" ["
#27}5 8 19 4 1 #87}14 12 | 1 9 10
< <

-

Encode first entry relative to source vertex

All chunks can be
decoded in parallel!

We chose T=1000

- Similar performance

and space usage for
a wide range of T

Ligra+ Space Savings

Space relative to Ligra using
- byte codes with run-length encoding

mLigra

mLigra+

* Space savings of about 1.3—3x

* Could use more sophisticated schemes to further
reduce space, but more expensive to decode

» Cost of decoding on-the-fly?

Ligra+ Performance

Sin@eHhdativiend@ wdati Bptedigra 40-core time relative to Ligra

m Ligra

mLigra+

* Cost of decoding on-the-fly?

 Memory subsystem is a scalability bottleneck in
parallel as these graph algorithms are memory-bound

« Ligra+ decoding gets better parallel speed up

- 5
Ligra Summary

VertexSubset VertexMap EdgeMap

Optimizations: Hybrid traversal
and graph compression

Breadth-first search Single-source shortest paths
Betweenness centrality Eccentricity estimation
Connected components (Personalized) PageRank
Triangle counting Local graph clustering
K-core decomposition Biconnected components

Maximal independent set Collaborative filtering

Simplicity, Performance, Scalability

