
1/27

The Input/Output Complexity of Sorting and
Related Problems

Alok Aggarwal and Jeffery Scott Vitter

6.886

February 21, 2019

2/27

Overview

I I/O Model

I Tight bounds for worst and average case for the following
problems

1. Sorting
2. Permuting
3. FFT/permutation networks
4. Matrix transposition

I Analysis of I/O bounds for algorithms

3/27

I/O Model

Memory model:

I Memory is divided into internal memory and secondary
storage/disk.

I Time is defined the number of I/O operations. Space is
measured as the amount of memory needed.

I CPU calculation can be done only on data in the memory, but
any such calculation is charged with no cost.

I Accessing data in the memory is also for free.

3/27

I/O Model

Memory model:

I Memory is divided into internal memory and secondary
storage/disk.

I Time is defined the number of I/O operations. Space is
measured as the amount of memory needed.

I CPU calculation can be done only on data in the memory, but
any such calculation is charged with no cost.

I Accessing data in the memory is also for free.

3/27

I/O Model

Memory model:

I Memory is divided into internal memory and secondary
storage/disk.

I Time is defined the number of I/O operations. Space is
measured as the amount of memory needed.

I CPU calculation can be done only on data in the memory, but
any such calculation is charged with no cost.

I Accessing data in the memory is also for free.

3/27

I/O Model

Memory model:

I Memory is divided into internal memory and secondary
storage/disk.

I Time is defined the number of I/O operations. Space is
measured as the amount of memory needed.

I CPU calculation can be done only on data in the memory, but
any such calculation is charged with no cost.

I Accessing data in the memory is also for free.

3/27

I/O Model

Memory model:

I Memory is divided into internal memory and secondary
storage/disk.

I Time is defined the number of I/O operations. Space is
measured as the amount of memory needed.

I CPU calculation can be done only on data in the memory, but
any such calculation is charged with no cost.

I Accessing data in the memory is also for free.

4/27

Parameters

I N = Number of records to sort

I M = Number of records that fit in internal memory

I B = Number of records that can be transferred in a single
block

I P = Number of blocks that can be transferred concurrently

Some bounds:
1 ≤ B ≤ M < N

1 ≤ P ≤ bM/Bc

4/27

Parameters

I N = Number of records to sort

I M = Number of records that fit in internal memory

I B = Number of records that can be transferred in a single
block

I P = Number of blocks that can be transferred concurrently

Some bounds:
1 ≤ B ≤ M < N

1 ≤ P ≤ bM/Bc

4/27

Parameters

I N = Number of records to sort

I M = Number of records that fit in internal memory

I B = Number of records that can be transferred in a single
block

I P = Number of blocks that can be transferred concurrently

Some bounds:
1 ≤ B ≤ M < N

1 ≤ P ≤ bM/Bc

4/27

Parameters

I N = Number of records to sort

I M = Number of records that fit in internal memory

I B = Number of records that can be transferred in a single
block

I P = Number of blocks that can be transferred concurrently

Some bounds:
1 ≤ B ≤ M < N

1 ≤ P ≤ bM/Bc

4/27

Parameters

I N = Number of records to sort

I M = Number of records that fit in internal memory

I B = Number of records that can be transferred in a single
block

I P = Number of blocks that can be transferred concurrently

Some bounds:
1 ≤ B ≤ M < N

1 ≤ P ≤ bM/Bc

4/27

Parameters

I N = Number of records to sort

I M = Number of records that fit in internal memory

I B = Number of records that can be transferred in a single
block

I P = Number of blocks that can be transferred concurrently

Some bounds:
1 ≤ B ≤ M < N

1 ≤ P ≤ bM/Bc

4/27

Parameters

I N = Number of records to sort

I M = Number of records that fit in internal memory

I B = Number of records that can be transferred in a single
block

I P = Number of blocks that can be transferred concurrently

Some bounds:
1 ≤ B ≤ M < N

1 ≤ P ≤ bM/Bc

5/27

I/O Model

Memory model:

I Memory is divided into internal memory (holds M records)
and secondary storage/disk (>> M)

I We can think of both together as a single contiguous array,
where internal memory goes from x [1], x [2], · · · , x [M] and
secondary storage from x [M + 1], x [M + 2], · · ·

5/27

I/O Model

Memory model:

I Memory is divided into internal memory (holds M records)
and secondary storage/disk (>> M)

I We can think of both together as a single contiguous array,
where internal memory goes from x [1], x [2], · · · , x [M] and
secondary storage from x [M + 1], x [M + 2], · · ·

6/27

Sorting

I Problem: The internal memory is empty, and the N records
reside at the beginning of the disk

I Goal: The internal memory is empty, and the N records reside
at the beginning of the disk in sorted nondecreasing order by
their key values.

I Some notation: We denote the N records as R1,R2, · · · ,RN .
At the start of the problem, x [M + i] = Ri ∀1 ≤ i ≤ N.

7/27

Permutation

I Problem: The internal memory is empty, and the N records
reside at the beginning of the disk (same as sorting).

I Goal: The internal memory is empty, and the N records reside
at the beginning of the disk. The key values of the N records
form a permutation of {1, 2, · · · ,N}.

I What is the relationship between sorting and permuting?

8/27

External Merge Sort

Assume P = 1, 3B ≤ M.

1. Start with internal memory empty, N/B block in disk.

2. For each block, load it into internal memory and sort the keys
within the block. We now have N/B partitions that are each
internally sorted.

3. Now we begin merging partitions

3.1 Assume we have P1 and P2. We want the get the B first
elements in P1 ∪ P2

3.2 This is clearly contained in P1[1 : B] ∪ P2[1 : B].
3.3 How do we get the next B elements?

8/27

External Merge Sort

Assume P = 1, 3B ≤ M.

1. Start with internal memory empty, N/B block in disk.

2. For each block, load it into internal memory and sort the keys
within the block. We now have N/B partitions that are each
internally sorted.

3. Now we begin merging partitions

3.1 Assume we have P1 and P2. We want the get the B first
elements in P1 ∪ P2

3.2 This is clearly contained in P1[1 : B] ∪ P2[1 : B].
3.3 How do we get the next B elements?

8/27

External Merge Sort

Assume P = 1, 3B ≤ M.

1. Start with internal memory empty, N/B block in disk.

2. For each block, load it into internal memory and sort the keys
within the block. We now have N/B partitions that are each
internally sorted.

3. Now we begin merging partitions

3.1 Assume we have P1 and P2. We want the get the B first
elements in P1 ∪ P2

3.2 This is clearly contained in P1[1 : B] ∪ P2[1 : B].
3.3 How do we get the next B elements?

8/27

External Merge Sort

Assume P = 1, 3B ≤ M.

1. Start with internal memory empty, N/B block in disk.

2. For each block, load it into internal memory and sort the keys
within the block. We now have N/B partitions that are each
internally sorted.

3. Now we begin merging partitions

3.1 Assume we have P1 and P2. We want the get the B first
elements in P1 ∪ P2

3.2 This is clearly contained in P1[1 : B] ∪ P2[1 : B].
3.3 How do we get the next B elements?

9/27

External Merge Sort

Assume P = 1, 3B ≤ M.

I Runtime:
O((N/B)logM/B(N/B))

I The total number of levels of merges is O(logM/B(N/B)).

I Each level, we do O((N/B) work (in terms of I/Os).

9/27

External Merge Sort

Assume P = 1, 3B ≤ M.

I Runtime:
O((N/B)logM/B(N/B))

I The total number of levels of merges is O(logM/B(N/B)).

I Each level, we do O((N/B) work (in terms of I/Os).

9/27

External Merge Sort

Assume P = 1, 3B ≤ M.

I Runtime:
O((N/B)logM/B(N/B))

I The total number of levels of merges is O(logM/B(N/B)).

I Each level, we do O((N/B) work (in terms of I/Os).

9/27

External Merge Sort

Assume P = 1, 3B ≤ M.

I Runtime:
O((N/B)logM/B(N/B))

I The total number of levels of merges is O(logM/B(N/B)).

I Each level, we do O((N/B) work (in terms of I/Os).

10/27

Permuting: Two ways

I How do we permute elements that are all stored in RAM?

I What about with secondary storage?

I Approach 1: Reuse the algorithm used for the RAM model.

Number of I/Os O(N)

I Approach 2: External sort: I/O’s O((N/B)logM/B(N/B))

I Can we do O(N/B)?

10/27

Permuting: Two ways

I How do we permute elements that are all stored in RAM?

I What about with secondary storage?

I Approach 1: Reuse the algorithm used for the RAM model.
Number of I/Os O(N)

I Approach 2: External sort: I/O’s O((N/B)logM/B(N/B))

I Can we do O(N/B)?

10/27

Permuting: Two ways

I How do we permute elements that are all stored in RAM?

I What about with secondary storage?

I Approach 1: Reuse the algorithm used for the RAM model.
Number of I/Os O(N)

I Approach 2: External sort: I/O’s O((N/B)logM/B(N/B))

I Can we do O(N/B)?

11/27

I/O Model

A few assumptions about the I/O Model

I Records are indivisible (no bit manipulations)

I All I/Os are ”simple”: when transferring a record, it is written
to an location, then deleted from the original location.

I The disk is divided into blocks called ”tracks”: locations
x [M + (k − l)B + 1], x [M + (k − l)B + 2], ..., x [M + kB]
comprise the kth track.

I Each I/O performed transfers B records that come from the
same track.

11/27

I/O Model

A few assumptions about the I/O Model

I Records are indivisible (no bit manipulations)

I All I/Os are ”simple”: when transferring a record, it is written
to an location, then deleted from the original location.

I The disk is divided into blocks called ”tracks”: locations
x [M + (k − l)B + 1], x [M + (k − l)B + 2], ..., x [M + kB]
comprise the kth track.

I Each I/O performed transfers B records that come from the
same track.

11/27

I/O Model

A few assumptions about the I/O Model

I Records are indivisible (no bit manipulations)

I All I/Os are ”simple”: when transferring a record, it is written
to an location, then deleted from the original location.

I The disk is divided into blocks called ”tracks”: locations
x [M + (k − l)B + 1], x [M + (k − l)B + 2], ..., x [M + kB]
comprise the kth track.

I Each I/O performed transfers B records that come from the
same track.

11/27

I/O Model

A few assumptions about the I/O Model

I Records are indivisible (no bit manipulations)

I All I/Os are ”simple”: when transferring a record, it is written
to an location, then deleted from the original location.

I The disk is divided into blocks called ”tracks”: locations
x [M + (k − l)B + 1], x [M + (k − l)B + 2], ..., x [M + kB]
comprise the kth track.

I Each I/O performed transfers B records that come from the
same track.

12/27

Main results - Sorting

Theorem
The average and worst case number of I/Os for sorting N records is

θ

(
N

PB

log(1 + N/B)

log(1 + M/B)

)
.

I If M = 2,B = P = 1 we get the well known O(N log(N))
bound on comparison sort.

13/27

Main results - Permutation

Theorem
The average and worst case number of I/Os for permuting N
records is

θ

(
min

(
N

P
,
N

PB

log(1 + N/B)

log(1 + M/B)

))

I The second term is the same as the bound for sorting.

I When M and B are small, we are essentially doing the naive
permutation method described before.

13/27

Main results - Permutation

Theorem
The average and worst case number of I/Os for permuting N
records is

θ

(
min

(
N

P
,
N

PB

log(1 + N/B)

log(1 + M/B)

))

I The second term is the same as the bound for sorting.

I When M and B are small, we are essentially doing the naive
permutation method described before.

13/27

Main results - Permutation

Theorem
The average and worst case number of I/Os for permuting N
records is

θ

(
min

(
N

P
,
N

PB

log(1 + N/B)

log(1 + M/B)

))

I The second term is the same as the bound for sorting.

I When M and B are small, we are essentially doing the naive
permutation method described before.

14/27

Main results - Permutation Proof

Theorem
The average and worst case number of I/Os for permuting N
records is

θ

(
min

(
N

P
,
N

PB

log(1 + N/B)

log(1 + M/B)

))
We say a permutation p1, p2, · · · pN of the N records can be
generated at time t if there is some sequence of t I/OS such that
after the I/OS all records are in correct permuted order in disk:
x [i] = Rpk and x [j] = Rpk+1

imply i < j ∀i , j , k.

15/27

Sorting

1. Strip out key values and sort in memory.

2. Permute records based off key order.

16/27

Main results - Permutation Proof

Theorem
The average and worst case number of I/Os for permuting N
records is

θ

(
min

(
N

P
,
N

PB

log(1 + N/B)

log(1 + M/B)

))
Proof Idea: Bound the number of possible permutations that can
be generated by t I/Os. Choose smallest t such that the number
of possible permutations is ≥ N!

17/27

FFT
Background: Fourier Series

DFT:

DFT in Matrix Form:

17/27

FFT
Background: Fourier Series

DFT:

DFT in Matrix Form:

17/27

FFT
Background: Fourier Series

DFT:

DFT in Matrix Form:

18/27

FFT

Butterfly Diagram

19/27

FFT

Butterfly Diagram

20/27

Main results - FFT

Theorem
The average and worst case number of I/Os for for computing the
N-input FFT digraph is

θ

(
N

PB

log(1 + N/B)

log(1 + M/B)

)
.

21/27

Matrix Transposition

I Problem: A p x q matrix A = (Ai ,j) of N = pq records stored
in row-major order on disk. The internal memory is empty.

I Goal: The internal memory is empty, and the transposed
matrix AT resides on disk in row-major order.

I Reminder:

21/27

Matrix Transposition

I Problem: A p x q matrix A = (Ai ,j) of N = pq records stored
in row-major order on disk. The internal memory is empty.

I Goal: The internal memory is empty, and the transposed
matrix AT resides on disk in row-major order.

I Reminder:

21/27

Matrix Transposition

I Problem: A p x q matrix A = (Ai ,j) of N = pq records stored
in row-major order on disk. The internal memory is empty.

I Goal: The internal memory is empty, and the transposed
matrix AT resides on disk in row-major order.

I Reminder:

22/27

Main results - Matrix Transposition

Theorem
The number of I/OS required to transpose a p x q matrix stored in
row-major order, is

θ

(
N

PB

log (min 1 + N/B,M, 1 + min(p, q))

log(1 + M/B)

)
.

I Also a similar problem to permuting/sorting when B is large.

θ

(
N

PB

log(1 + N/B)

log(1 + M/B)

)
.

22/27

Main results - Matrix Transposition

Theorem
The number of I/OS required to transpose a p x q matrix stored in
row-major order, is

θ

(
N

PB

log (min 1 + N/B,M, 1 + min(p, q))

log(1 + M/B)

)
.

I Also a similar problem to permuting/sorting when B is large.

θ

(
N

PB

log(1 + N/B)

log(1 + M/B)

)
.

22/27

Main results - Matrix Transposition

Theorem
The number of I/OS required to transpose a p x q matrix stored in
row-major order, is

θ

(
N

PB

log (min 1 + N/B,M, 1 + min(p, q))

log(1 + M/B)

)
.

I Also a similar problem to permuting/sorting when B is large.

θ

(
N

PB

log(1 + N/B)

log(1 + M/B)

)
.

23/27

Algorithm: Merge Sort

Assume P = 1, 3B ≤ M. Reminder

I Runtime:
O((N/B)logM/B(N/B))

I The total number of levels of merges is O(logM/B(N/B)).

I Each level, we do O((N/B) work (in terms of I/Os).

23/27

Algorithm: Merge Sort

Assume P = 1, 3B ≤ M. Reminder

I Runtime:
O((N/B)logM/B(N/B))

I The total number of levels of merges is O(logM/B(N/B)).

I Each level, we do O((N/B) work (in terms of I/Os).

23/27

Algorithm: Merge Sort

Assume P = 1, 3B ≤ M. Reminder

I Runtime:
O((N/B)logM/B(N/B))

I The total number of levels of merges is O(logM/B(N/B)).

I Each level, we do O((N/B) work (in terms of I/Os).

23/27

Algorithm: Merge Sort

Assume P = 1, 3B ≤ M. Reminder

I Runtime:
O((N/B)logM/B(N/B))

I The total number of levels of merges is O(logM/B(N/B)).

I Each level, we do O((N/B) work (in terms of I/Os).

24/27

Algorithm: Distribution Sort
Analogous to quick-sort. Let S be the set of elements you wish to
sort

1. Let f =
√

M
B . Find a set of pivots p1, p2, .., pf such that there

are O(N/f) elements in each partition. Takes O(N/B)
2. Partition elements in S into buckets based on pivots:

S1,S2, · · · ,Sf
3. Recurse to sort within each bucket.
4. If S ≤ B, sort in internal memory.

Recursion:

T (N) ≤
f∑

i=1

T (|Si |) + O(N/B)

Runtime:
O
(
(N/B)logM/B(N/B)

)
Compare with theoretical bound:

θ

(
N

B

log(1 + N/B)

log(1 + M/B)

)
.

24/27

Algorithm: Distribution Sort
Analogous to quick-sort. Let S be the set of elements you wish to
sort

1. Let f =
√

M
B . Find a set of pivots p1, p2, .., pf such that there

are O(N/f) elements in each partition. Takes O(N/B)

2. Partition elements in S into buckets based on pivots:
S1,S2, · · · ,Sf

3. Recurse to sort within each bucket.
4. If S ≤ B, sort in internal memory.

Recursion:

T (N) ≤
f∑

i=1

T (|Si |) + O(N/B)

Runtime:
O
(
(N/B)logM/B(N/B)

)
Compare with theoretical bound:

θ

(
N

B

log(1 + N/B)

log(1 + M/B)

)
.

24/27

Algorithm: Distribution Sort
Analogous to quick-sort. Let S be the set of elements you wish to
sort

1. Let f =
√

M
B . Find a set of pivots p1, p2, .., pf such that there

are O(N/f) elements in each partition. Takes O(N/B)
2. Partition elements in S into buckets based on pivots:

S1,S2, · · · ,Sf

3. Recurse to sort within each bucket.
4. If S ≤ B, sort in internal memory.

Recursion:

T (N) ≤
f∑

i=1

T (|Si |) + O(N/B)

Runtime:
O
(
(N/B)logM/B(N/B)

)
Compare with theoretical bound:

θ

(
N

B

log(1 + N/B)

log(1 + M/B)

)
.

24/27

Algorithm: Distribution Sort
Analogous to quick-sort. Let S be the set of elements you wish to
sort

1. Let f =
√

M
B . Find a set of pivots p1, p2, .., pf such that there

are O(N/f) elements in each partition. Takes O(N/B)
2. Partition elements in S into buckets based on pivots:

S1,S2, · · · ,Sf
3. Recurse to sort within each bucket.

4. If S ≤ B, sort in internal memory.

Recursion:

T (N) ≤
f∑

i=1

T (|Si |) + O(N/B)

Runtime:
O
(
(N/B)logM/B(N/B)

)
Compare with theoretical bound:

θ

(
N

B

log(1 + N/B)

log(1 + M/B)

)
.

24/27

Algorithm: Distribution Sort
Analogous to quick-sort. Let S be the set of elements you wish to
sort

1. Let f =
√

M
B . Find a set of pivots p1, p2, .., pf such that there

are O(N/f) elements in each partition. Takes O(N/B)
2. Partition elements in S into buckets based on pivots:

S1,S2, · · · ,Sf
3. Recurse to sort within each bucket.
4. If S ≤ B, sort in internal memory.

Recursion:

T (N) ≤
f∑

i=1

T (|Si |) + O(N/B)

Runtime:
O
(
(N/B)logM/B(N/B)

)
Compare with theoretical bound:

θ

(
N

B

log(1 + N/B)

log(1 + M/B)

)
.

24/27

Algorithm: Distribution Sort
Analogous to quick-sort. Let S be the set of elements you wish to
sort

1. Let f =
√

M
B . Find a set of pivots p1, p2, .., pf such that there

are O(N/f) elements in each partition. Takes O(N/B)
2. Partition elements in S into buckets based on pivots:

S1,S2, · · · ,Sf
3. Recurse to sort within each bucket.
4. If S ≤ B, sort in internal memory.

Recursion:

T (N) ≤
f∑

i=1

T (|Si |) + O(N/B)

Runtime:
O
(
(N/B)logM/B(N/B)

)
Compare with theoretical bound:

θ

(
N

B

log(1 + N/B)

log(1 + M/B)

)
.

24/27

Algorithm: Distribution Sort
Analogous to quick-sort. Let S be the set of elements you wish to
sort

1. Let f =
√

M
B . Find a set of pivots p1, p2, .., pf such that there

are O(N/f) elements in each partition. Takes O(N/B)
2. Partition elements in S into buckets based on pivots:

S1,S2, · · · ,Sf
3. Recurse to sort within each bucket.
4. If S ≤ B, sort in internal memory.

Recursion:

T (N) ≤
f∑

i=1

T (|Si |) + O(N/B)

Runtime:
O
(
(N/B)logM/B(N/B)

)

Compare with theoretical bound:

θ

(
N

B

log(1 + N/B)

log(1 + M/B)

)
.

24/27

Algorithm: Distribution Sort
Analogous to quick-sort. Let S be the set of elements you wish to
sort

1. Let f =
√

M
B . Find a set of pivots p1, p2, .., pf such that there

are O(N/f) elements in each partition. Takes O(N/B)
2. Partition elements in S into buckets based on pivots:

S1,S2, · · · ,Sf
3. Recurse to sort within each bucket.
4. If S ≤ B, sort in internal memory.

Recursion:

T (N) ≤
f∑

i=1

T (|Si |) + O(N/B)

Runtime:
O
(
(N/B)logM/B(N/B)

)
Compare with theoretical bound:

θ

(
N

B

log(1 + N/B)

log(1 + M/B)

)
.

25/27

Distribution Sort

How do we find our pivots in O(N/B)? Inutition: Median of
Medians

1. Let t = N/M

2. Divide S into t groups: G1, · · · ,Gt , each with M elements.

3. Load each Gi into memory + sort.

4. After sorting, collect one out of every f elements of Gi . Call
these your representatives.

5. Let G be the set of representatives for every Gi . There are
O(Mf

N
M) = O(N/f) elements.

6. For i ∈ [1, f] let pi be the id N
f 2
e smallest element in G .

7. How do we find that? k-selection! Takes O(N/B).

8. Total cost of all k-selections is O(N
fB f) = O(N/B).

25/27

Distribution Sort

How do we find our pivots in O(N/B)? Inutition: Median of
Medians

1. Let t = N/M

2. Divide S into t groups: G1, · · · ,Gt , each with M elements.

3. Load each Gi into memory + sort.

4. After sorting, collect one out of every f elements of Gi . Call
these your representatives.

5. Let G be the set of representatives for every Gi . There are
O(Mf

N
M) = O(N/f) elements.

6. For i ∈ [1, f] let pi be the id N
f 2
e smallest element in G .

7. How do we find that? k-selection! Takes O(N/B).

8. Total cost of all k-selections is O(N
fB f) = O(N/B).

25/27

Distribution Sort

How do we find our pivots in O(N/B)? Inutition: Median of
Medians

1. Let t = N/M

2. Divide S into t groups: G1, · · · ,Gt , each with M elements.

3. Load each Gi into memory + sort.

4. After sorting, collect one out of every f elements of Gi . Call
these your representatives.

5. Let G be the set of representatives for every Gi . There are
O(Mf

N
M) = O(N/f) elements.

6. For i ∈ [1, f] let pi be the id N
f 2
e smallest element in G .

7. How do we find that? k-selection! Takes O(N/B).

8. Total cost of all k-selections is O(N
fB f) = O(N/B).

25/27

Distribution Sort

How do we find our pivots in O(N/B)? Inutition: Median of
Medians

1. Let t = N/M

2. Divide S into t groups: G1, · · · ,Gt , each with M elements.

3. Load each Gi into memory + sort.

4. After sorting, collect one out of every f elements of Gi . Call
these your representatives.

5. Let G be the set of representatives for every Gi . There are
O(Mf

N
M) = O(N/f) elements.

6. For i ∈ [1, f] let pi be the id N
f 2
e smallest element in G .

7. How do we find that? k-selection! Takes O(N/B).

8. Total cost of all k-selections is O(N
fB f) = O(N/B).

25/27

Distribution Sort

How do we find our pivots in O(N/B)? Inutition: Median of
Medians

1. Let t = N/M

2. Divide S into t groups: G1, · · · ,Gt , each with M elements.

3. Load each Gi into memory + sort.

4. After sorting, collect one out of every f elements of Gi . Call
these your representatives.

5. Let G be the set of representatives for every Gi . There are
O(Mf

N
M) = O(N/f) elements.

6. For i ∈ [1, f] let pi be the id N
f 2
e smallest element in G .

7. How do we find that? k-selection! Takes O(N/B).

8. Total cost of all k-selections is O(N
fB f) = O(N/B).

25/27

Distribution Sort

How do we find our pivots in O(N/B)? Inutition: Median of
Medians

1. Let t = N/M

2. Divide S into t groups: G1, · · · ,Gt , each with M elements.

3. Load each Gi into memory + sort.

4. After sorting, collect one out of every f elements of Gi . Call
these your representatives.

5. Let G be the set of representatives for every Gi . There are
O(Mf

N
M) = O(N/f) elements.

6. For i ∈ [1, f] let pi be the id N
f 2
e smallest element in G .

7. How do we find that? k-selection! Takes O(N/B).

8. Total cost of all k-selections is O(N
fB f) = O(N/B).

25/27

Distribution Sort

How do we find our pivots in O(N/B)? Inutition: Median of
Medians

1. Let t = N/M

2. Divide S into t groups: G1, · · · ,Gt , each with M elements.

3. Load each Gi into memory + sort.

4. After sorting, collect one out of every f elements of Gi . Call
these your representatives.

5. Let G be the set of representatives for every Gi . There are
O(Mf

N
M) = O(N/f) elements.

6. For i ∈ [1, f] let pi be the id N
f 2
e smallest element in G .

7. How do we find that?

k-selection! Takes O(N/B).

8. Total cost of all k-selections is O(N
fB f) = O(N/B).

25/27

Distribution Sort

How do we find our pivots in O(N/B)? Inutition: Median of
Medians

1. Let t = N/M

2. Divide S into t groups: G1, · · · ,Gt , each with M elements.

3. Load each Gi into memory + sort.

4. After sorting, collect one out of every f elements of Gi . Call
these your representatives.

5. Let G be the set of representatives for every Gi . There are
O(Mf

N
M) = O(N/f) elements.

6. For i ∈ [1, f] let pi be the id N
f 2
e smallest element in G .

7. How do we find that? k-selection! Takes O(N/B).

8. Total cost of all k-selections is O(N
fB f) = O(N/B).

25/27

Distribution Sort

How do we find our pivots in O(N/B)? Inutition: Median of
Medians

1. Let t = N/M

2. Divide S into t groups: G1, · · · ,Gt , each with M elements.

3. Load each Gi into memory + sort.

4. After sorting, collect one out of every f elements of Gi . Call
these your representatives.

5. Let G be the set of representatives for every Gi . There are
O(Mf

N
M) = O(N/f) elements.

6. For i ∈ [1, f] let pi be the id N
f 2
e smallest element in G .

7. How do we find that? k-selection! Takes O(N/B).

8. Total cost of all k-selections is O(N
fB f) = O(N/B).

26/27

Algorithm: Permuting

I Permuting is a special case of sorting.

I Unless B, M is small: then use naive method.

27/27

Summary

I Sorting

θ

(
N

PB

log(1 + N/B)

log(1 + M/B)

)
I Permuting

θ

(
min

(
N

PB

log(1 + N/B)

log(1 + M/B)
,
N

P

))
I FFT

θ

(
N

PB

log(1 + N/B)

log(1 + M/B)

)
I Matrix Transposition

θ

(
N

PB

log (min 1 + N/B,M, 1 + min(p, q))

log(1 + M/B)

)

