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Overview

> |/O Model

» Tight bounds for worst and average case for the following
problems
1. Sorting
2. Permuting
3. FFT/permutation networks
4. Matrix transposition

» Analysis of 1/O bounds for algorithms
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/O Model

Memory model:

RAM | Disk
NSNS NSEENENENEEEEEEE NN

» Memory is divided into internal memory (holds M records)
and secondary storage/disk (>> M)

» We can think of both together as a single contiguous array,
where internal memory goes from x[1], x[2],- - , x[M] and
secondary storage from x[M + 1], x[M + 2], - - -



Sorting

» Problem: The internal memory is empty, and the N records
reside at the beginning of the disk

» Goal: The internal memory is empty, and the N records reside
at the beginning of the disk in sorted nondecreasing order by
their key values.

» Some notation: We denote the N records as Ry, R», - -+ , Ry.
At the start of the problem, x[M +i] = R; V1 < i < N.



Permutation

» Problem: The internal memory is empty, and the N records
reside at the beginning of the disk (same as sorting).

» Goal: The internal memory is empty, and the N records reside
at the beginning of the disk. The key values of the N records
form a permutation of {1,2,--- , N}.

» What is the relationship between sorting and permuting?
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External Merge Sort

Assume P=1, 3B < M.
1. Start with internal memory empty, N /B block in disk.

2. For each block, load it into internal memory and sort the keys
within the block. We now have N/B partitions that are each
internally sorted.

3. Now we begin merging partitions
3.1 Assume we have P; and P,. We want the get the B first

elements in P; U P,
3.2 This is clearly contained in Py[1: B]U P,[1: B.
3.3 How do we get the next B elements?
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Permuting: Two ways

v

How do we permute elements that are all stored in RAM?

v

What about with secondary storage?

v

Approach 1: Reuse the algorithm used for the RAM model.
Number of 1/Os O(N)

Approach 2: External sort: 1/0's O((N/B)logn, s(N/B))
Can we do O(N/B)?

v

v
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A few assumptions about the |/O Model
» Records are indivisible (no bit manipulations)

» All 1/Os are "simple”: when transferring a record, it is written
to an location, then deleted from the original location.

» The disk is divided into blocks called "tracks”: locations
XM+ (k=B +1,x[M+ (k= 1)B+2],...,x[M + kB]
comprise the kth track.

» Each |/O performed transfers B records that come from the
same track.



Main results - Sorting

Theorem
The average and worst case number of 1/Os for sorting N records is

N log(1+ N/B)
0 <PBIog(1+ I\/I/B)>

» If M =2,B=P =1 we get the well known O(N log(N))
bound on comparison sort.
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Theorem
The average and worst case number of |/Os for permuting N

records is
. (N N log(l+ N/B)
|lmn|—=, =—w—>— =
P’ PBlog(1+ M/B)

» The second term is the same as the bound for sorting.

» When M and B are small, we are essentially doing the naive
permutation method described before.



Main results - Permutation Proof

Theorem
The average and worst case number of |/Os for permuting N

records is
. (N N log(1+ N/B)
|lmn|—=, =—w—>— =
P’ PBlog(1+ M/B)

We say a permutation p1, p2, - - - py of the N records can be
generated at time t if there is some sequence of t 1/OS such that
after the I/OS all records are in correct permuted order in disk:
x[i] = Rp, and x[j] = Ry, ., imply i < j Vi,j, k.



Sorting

1. Strip out key values and sort in memory.

2. Permute records based off key order.



Main results - Permutation Proof

Theorem
The average and worst case number of |/Os for permuting N

records is
. (N N log(1+ N/B)
O|lmn|[—=, =—w—— "=
P’ PBlog(1+ M/B)

Proof Idea: Bound the number of possible permutations that can
be generated by t |/Os. Choose smallest t such that the number
of possible permutations is > N!
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Background: Fourier Series
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DFT:

1 N-1
ol ,m § 17 —27\'an/N_
N

n=0

DFT in Matrix Form:

o 11 1 1 1 do
2 3 -1

Vi 1 o, w, w, ), a;

V2 _ 1 o w} w$ w21 a

V3 1 o} o w) 3D as
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FFT

Butterfly Diagram

X[01
X1
X(21

X[3]

Lo x4l
Lo X(5)
S0 X(6]

o x7)

x[0]o—»—

2]o—>—
21 N/2- point
xdlo~|  DFT
x[6]o—»—|
x[1lo—»—]
8-> N/2- point
- DFT
x[7]o——|




FFT

Butterfly Diagram
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Main results - FFT

Theorem
The average and worst case number of |/Os for for computing the
N-input FFT digraph is

N log(1+ N/B)
0 <PBIog(1+ I\/I/B)>
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Matrix Transposition

» Problem: A p x g matrix A = (A;) of N = pq records stored
in row-major order on disk. The internal memory is empty.

» Goal: The internal memory is empty, and the transposed
matrix A7 resides on disk in row-major order.

» Reminder:
Row-major order
Aoy 3
Aofoo—ioy
Agf—dgo—=Bn3
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Main results - Matrix Transposition

Theorem
The number of 1/0OS required to transpose a p x q matrix stored in
row-major order, is

9 <Nlog(min 1+ N/B,M,1+ min(p, q)))
PB log(1 + M/B)

» Also a similar problem to permuting/sorting when B is large.

N log(1+ N/B)
o <PBIog(1 + I\/I/B)>
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Algorithm: Distribution Sort

Analogous to quick-sort. Let S be the set of elements you wish to

sort
1. Let f = \/g. Find a set of pivots p1, po, .., pr such that there
are O(N/f) elements in each partition. Takes O(N/B)
2. Partition elements in S into buckets based on pivots:
51,5, -+, 5¢
3. Recurse to sort within each bucket.
4. If S < B, sort in internal memory.
Recursion:
f
T(N) <> T(Sil)+ O(N/B)
i=1
Runtime:

O ((N/B)logn,s(N/B))

Compare with theoretical bound:

N log(1+ N/B)
0 (Blog(l + M/B)>
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Distribution Sort

How do we find our pivots in O(N/B)? Inutition: Median of

Medians
1. Lett=N/M
2. Divide S into t groups: Gi,- -+, G, each with M elements.
3. Load each G; into memory + sort.
4. After sorting, collect one out of every f elements of G;. Call

these your representatives.

Let G be the set of representatives for every G;. There are
O(% 1) = O(N/f) elements.

6. For i € [1,f] let p; be the /[f—’\ﬂ smallest element in G.
7. How do we find that? k-selection! Takes O(N/B).
8. Total cost of all k-selections is O(4%f) = O(N/B).



Algorithm: Permuting

» Permuting is a special case of sorting.

» Unless B, M is small: then use naive method.



Summary

» Sorting

N log(1+ N/B)
b <PBIog(1+ IVI/B))

> Permuting
o ( min N log(1 + N/B),ﬂ
PBlog(1+ M/B)’ P

il 9 N log(1+ N/B)
<PB|og(1+/\/l/B)>

» Matrix Transposition

9 <N|og(min 1+ N/B,M,1+ min(p,q))
PB log(1 + M/B) )




