A Functional Approach to External Graph Algorithms [ABW98] James Abello, Adam L. Buchsbaum, Jeffery R. Westbrook

Presenter: Amartya Shankha Biswas

February 25, 2019

Number of Block Transfers to/from External Memory

►
$$scan(N) \equiv \mathcal{O}(\lceil N/B \rceil)$$

► $sort(N) \equiv \mathcal{O}(scan(N) \log_b \frac{N}{B})$

Functional I/O model for Graph Algorithms

- Sequence of functions applied to input
 - No side effects
 - Easy to enforce write-once discipline
- Simple data-structures are difficult to implement
- Batch updates and node copying add to I/O and space complexity

- Graphs in the external model
 - Represented as list of edges
 - No adjacency list
- Semi-external Model
 - Vertices fit in internal memory
 - $\blacktriangleright |V| < M < |E|$

Building Blocks

- Selection
- Relabeling
- Contraction

Select(I, k) using median-of-medians in $\mathcal{O}(scan(I))$

Recurse on either $\text{Select}(I_1, k)$ or $\text{Select}(I_2, k - |I_1| - 1)$

In expectation, $T(N) = T\left(\frac{3}{4}N\right) + \mathcal{O}\left(\frac{N}{B}\right) \Rightarrow T(N) = \mathcal{O}\left(\frac{N}{B}\right)$

$\mathsf{Relabel}(I,F) \text{ in } \mathcal{O}(sort(I) + sort(F))$

Sort edges in I by first endpoint and edges in F by source

- Iterate through sorted lists in tandem, relabeling first endpoints of I
- Repeat for second endpoint by sorting I again

Contract $(I, \{C_1, C_2, \dots\})$ in $\mathcal{O}(sort(I) + sort(\sum |C_i|))$

Reduce to Relabeling

- Replace each C_i with a star S_i
- Concatenate $\langle S_1, S_2, \cdots \rangle$ to obtain F
- Contract $(I, \{C_1, C_2, \cdots\} = \mathsf{Relabel}(I, F)$

Graph Partitioning: Divide-and-Conquer

- How to partition edges?
- Which sub-problem to solve?
- How to recombine?

Connected Components

- Sample half the edges of the graph as E₁
- Recursively compute

 $C_1 = \text{Connected-Components}(G_1 = (V, E_1))$

- Use contraction to obtain $G_2 = \text{Contract}(G, C_1)$
- Recursively compute $C_2 =$ Connected-Components (G_2)
- ▶ Return Connected-Components $(G) = C_2 \cup$ Relabel (C_2, C_1)

$$T(N) = 2T\left(\frac{N}{2}\right) + \mathcal{O}(sort(|E|))$$

▶ Repeat until problem size ≤ M
▶ log₂ ^{|E|}/_M iterations

▶ Total I/O complexity $T(|E|) = O\left(sort(|E|) \cdot \log_2 \frac{|E|}{M}\right)$

Minimum Spanning Tree

- ▶ Find the median edge weight m by running Select(E, |E|/2)
- Compute $E_1 \subset E$ as the set of edges with weight $\leq m$
- Recursively compute $T_1 = MST(G_1 = (V, E_1))$
- Compute the connected components of the MST obtained using half the edges: C_1 = Connected-Components (T_1)
- Use contracton to obtain $G_2 = \text{Contract}(G, C_1)$
- Recursively compute $T_2 = MST(G_2)$
- Return $T = T_1 \cup$ Inverse-Relabel (T_2, C_1)

Maximal Matching

- Sample half the edges of the graph as E₁
- Recurse to find M_1 = Maximal-Matching $(G_1 = (V, E_1))$
- Find set of vertices covered by the matching $V_1 = V(M_1)$
- Let $E_2 = E \setminus (V_1 \times V_1)$ and $G_2 = (V, E_2)$
- Return $M = M_1 \cup$ Maximal-Matching (G_2)

Semi-external Model: Vertices fit in Internal Memory

Minimum Spanning Tree

- Maintain union-find data structure in memory
- Run Kruskal's algorithm

Connected Components

- How to re-arrrange edges contiguously by component?
- ► I/O complexity dominated by sorting: $\mathcal{O}\left(scan(|E|) \cdot \log_{b} \frac{|E|}{B}\right)$
- What if there are few connected components?
- ▶ Desired runtime: $\mathcal{O}(scan(|E|) \cdot \log_{b} |\mathcal{C}|)$
- ▶ |C| is # of connected components

Grouping N Elements with keys in range $[1 \cdots G]$

Use *b* blocks in internal memory

- Each block stores elements from a disjoint range of length G/b
- Blocks are emptied to external memory when full

Recurse on each range (size G/b) from the last step

Sub-divide into three sub-ranges of size G/b^2 and so on . . .

Done after $\mathcal{O}(\log_b G)$ iterations

Total I/O complexity = $\mathcal{O}(scan(N) \cdot \log_b G)$

Grouping with b = 3 and G = 27

Partially filled blocks?

Concatenate to ensure that there is at most one.

Discussion

- Other graph problems:
 - Shortest paths
 - Random walk

Assume properties of the ordering of edges

James Abello, Adam L Buchsbaum, and Jeffery R Westbrook.

A functional approach to external graph algorithms. In *European Symposium on Algorithms*, pages 332–343. Springer, 1998.