
A Functional Approach to External Graph
Algorithms [ABW98]

James Abello, Adam L. Buchsbaum, Jeffery R. Westbrook

Presenter: Amartya Shankha Biswas

February 25, 2019

Number of Block Transfers to/from External Memory

▶ scan(N) ≡ O (⌈N/B⌉)
▶ sort(N) ≡ O

(
scan(N) logb N

B

)

Functional I/O model for Graph Algorithms

▶ Sequence of functions
applied to input
▶ No side effects
▶ Easy to enforce

write-once discipline
▶ Simple data-structures are

difficult to implement
▶ Batch updates and node

copying add to I/O and
space complexity

▶ Graphs in the external
model
▶ Represented as list of

edges
▶ No adjacency list

▶ Semi-external Model
▶ Vertices fit in internal

memory
▶ |V | < M < |E|

Building Blocks

▶ Selection
▶ Relabeling
▶ Contraction

Select(I, k) using median-of-medians in O(scan(I))

Recurse on either Select(I1, k) or Select(I2, k − |I1| − 1)

In expectation, T (N) = T
(
3
4N

)
+O

(
N
B

)
⇒ T (N) = O

(
N
B

)

Relabel(I, F) in O(sort(I) + sort(F))

▶ Sort edges in I by first endpoint and edges in F by source
▶ Iterate through sorted lists in tandem, relabeling first

endpoints of I
▶ Repeat for second endpoint by sorting I again

Contract(I, {C1, C2, · · · }) in O (sort(I) + sort(
∑

|Ci|))

Reduce to Relabeling

▶ Replace each Ci with a star Si

▶ Concatenate ⟨S1, S2, · · · ⟩ to obtain F

▶ Contract(I, {C1, C2, · · · } = Relabel(I, F)

Graph Partitioning: Divide-and-Conquer

▶ How to partition edges?
▶ Which sub-problem to solve?
▶ How to recombine?

Connected Components

▶ Sample half the edges of the graph as E1

▶ Recursively compute
C1 = Connected-Components(G1 = (V,E1))

▶ Use contraction to obtain G2 = Contract(G, C1)
▶ Recursively compute C2 = Connected-Components(G2)

▶ Return Connected-Components(G) = C2 ∪ Relabel (C2, C1)

T (N) = 2T

(
N

2

)
+O(sort(|E|))

▶ Repeat until problem size ≤ M

▶ log2
|E|
M iterations

▶ Total I/O complexity T (|E|) = O
(
sort(|E|) · log2

|E|
M

)

Minimum Spanning Tree

▶ Find the median edge weight m by running
Select(E, |E|/2)

▶ Compute E1 ⊂ E as the set of edges with weight ≤ m

▶ Recursively compute T1 = MST(G1 = (V,E1))

▶ Compute the connected components of the MST obtained
using half the edges: C1 = Connected-Components(T1)

▶ Use contracton to obtain G2 = Contract(G,C1)

▶ Recursively compute T2 = MST(G2)

▶ Return T = T1 ∪ Inverse-Relabel(T2, C1)

Maximal Matching

▶ Sample half the edges of the graph as E1

▶ Recurse to find M1 = Maximal-Matching(G1 = (V,E1))

▶ Find set of vertices covered by the matching V1 = V (M1)

▶ Let E2 = E \ (V1 × V1) and G2 = (V,E2)

▶ Return M = M1 ∪Maximal-Matching(G2)

Semi-external Model: Vertices fit in Internal Memory

Minimum Spanning Tree

▶ Maintain union-find data structure in memory
▶ Run Kruskal’s algorithm

Connected Components

▶ How to re-arrrange edges contiguously by component?
▶ I/O complexity dominated by sorting:

O
(
scan(|E|) · logb

|E|
B

)
▶ What if there are few connected components?
▶ Desired runtime: O (scan(|E|) · logb |C|)
▶ |C| is # of connected components

Grouping N Elements with keys in range [1 · · ·G]

Use b blocks in internal memory

▶ Each block stores elements from a disjoint range of length
G/b

▶ Blocks are emptied to external memory when full

Recurse on each range (size G/b) from the last step

Sub-divide into three sub-ranges of size G/b2 and so on . . .

Done after O (logb G) iterations

Total I/O complexity = O(scan(N) · logbG)

Grouping with b = 3 and G = 27

Partially filled blocks?
Concatenate to ensure that there is at most one.

Discussion

▶ Other graph problems:
▶ Shortest paths
▶ Random walk

▶ Assume properties of the ordering of edges

James Abello, Adam L Buchsbaum, and Jeffery R
Westbrook.
A functional approach to external graph algorithms.
In European Symposium on Algorithms, pages 332–343.
Springer, 1998.

