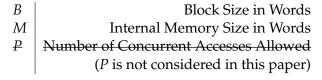
Cache-Oblivious Algorithms

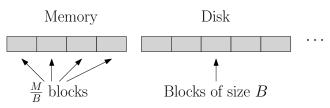
Matteo Frigo, Charles Leiserson, Harald Prokop, Sridhar Ramchandran

Slides Written and Presented by William Kuszmaul

THE DISK ACCESS MODEL

Three Parameters:





Time is measured in *disk operations*.

FAST ALGORITHMS IN THE DISK ACCESS MODEL

 $n \times n$ Matrix Multiplication:

 $O\left(\frac{n^3}{B\sqrt{M}}\right)$

Sorting: $O(n/B \cdot \log_M n)$

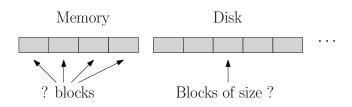
Fast Fourier Transform: $O(n/B \cdot \log_M n)$

(Running times given for $n \gg M \gg B$)

THIS PAPER: CACHE-OBLIVIOUS ALGORITHMS

The Setup:

- ► Algorithm *oblivious* to *M* and *B*
- Still evaluated in Disk Access Model



Question: Can we still get good running times?

WHY CACHE-OBLIVIOUS ALGORITHMS?

Advantages:

- Don't need to be tuned to specific machine
- ► Can interact well with *multiple caches* concurrently
- Algorithmically cool

Disadvantages:

► Are they practical? (Actually they often are!)

ALGORITHMS IN THIS PAPER

 $n \times n$ Matrix Multiplication:

Sorting: $O(n/B \cdot \log_M n)$

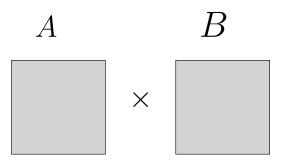
 $O\left(\frac{n^3}{B\sqrt{M}}\right)$

Fast Fourier Transform: $O(n/B \cdot \log_M n)$

(Running times given for $n \gg M \gg B$)

Part 1: Matrix Multiplication

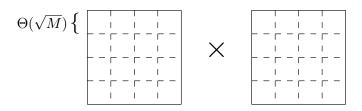
The Setup: Multiplying two $n \times n$ Matrices



Simplifying Assumptions:

- ▶ $n \gg M \gg B$
- ► *n* is a power of two

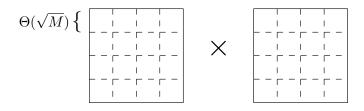
NON-OBLIVIOUS TILING ALGORITHM



The Algorithm:

- Step 1: Break matrices into tiles of size $\Theta(M)$
- ► **Step 2:** Treat each tile as a "number" and do normal matrix multiplication

Non-Oblivious Tiling Algorithm

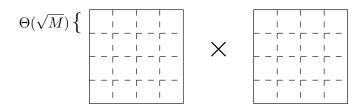


Running Time:

► Multiplying two tiles takes time:

$$O(M/B)$$
 instead of $O(\sqrt{M}^3)$.

Non-Oblivious Tiling Algorithm



Running Time:

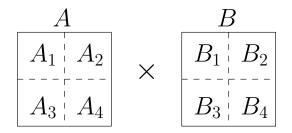
► Multiplying two tiles takes time:

$$O(M/B)$$
 instead of $O(\sqrt{M}^3)$.

► Total running time:

$$O\left(\frac{n^3}{B\sqrt{M}}\right)$$
.

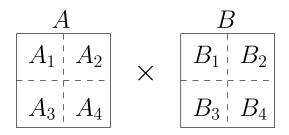
CACHE-OBLIVIOUS MATRIX MULTIPLICATION



The Algorithm:

- ► **Step 1:** Tile each matrix into fourths
- ► **Step 2:** Treat each tile as a "number" and multiply the 2 × 2 matrices.
- ▶ **Recursion:** When multiplying each A_i and B_j , recursively repeat entire procedure.

CACHE-OBLIVIOUS MATRIX MULTIPLICATION



Running Time:

- ► **Simulates Standard Tiling:** Once recursive tile-size becomes ≤ *M*, the multiplications will be done in memory
- ► Total running time:

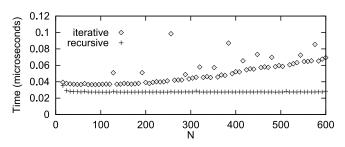
$$O\left(\frac{n^3}{B\sqrt{M}}\right)$$
.

HANDLING NON-SQUARE MATRICES

$$\begin{array}{c|c}
A & B \\
\hline
A_1 \mid A_2 \\
\hline
B_1 \\
\hline
B_2
\end{array}$$

Key Idea: Split long direction in two and recurse.

REAL-WORLD COMPARISON TO NAIVE n^3 ALGORITHM



Average time taken to multiply two $N \times N$ matrices, divided by N^3 .

► How does this compare to tiled algorithm? They don't say.

Why do we need $M \gg B$?

- ▶ Tiling algorithms require $M \ge B^2$.
- ► Known as the *tall cache assumption* because means:

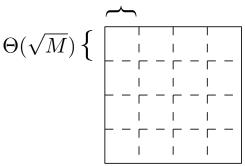
 Number of blocks in cache ≥ Size of each block

Why do we need $M \gg B$?

- ▶ Tiling algorithms require $M \ge B^2$.
- ▶ Known as the *tall cache assumption* because means: Number of blocks in cache ≥ Size of each block

Why we need it:

Need this to be $\Omega(B)$



ELIMINATING THE TALL CACHE ASSUMPTION

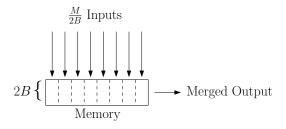
The Key Idea: Change how we store matrices!

Normal Ordering

Cache-Oblivious Ordering

Part 2: Sorting

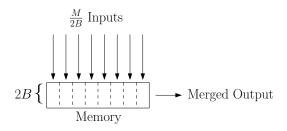
MERGESORT IN THE DISK ACCESS MODEL



Key Idea: Performing $\frac{M}{2B}$ -way merges

- ► Assign to each input stream a buffer of size 2*B*
- ► Read a block from input stream when buffer ≤ half full
- ► At each step output the *B* smallest elements in buffers

MERGESORT IN THE DISK ACCESS MODEL



Running Time:

- ▶ $O(\log_{M/B} n)$ levels of recursion
- Each takes time O(n/B)
- ▶ Total Running Time: $O\left(\frac{n}{B}\log_M n\right)$

(Assuming $n \gg M \gg B$)

CACHE-OBLIVIOUS SORTING

This paper introduces two algorithms:

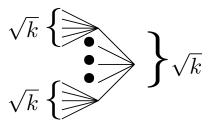
Funnel Sort: A cache-oblivious merge sort (We will focus on this one)

Modified Distribution Sort: Based on another Disk-Access-Model Algorithm.

A FAILED ATTEMPT AT CACHE-OBLIVIOUS MERGING

Question: How to we merge *k* streams?

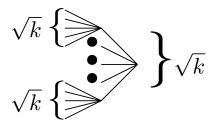
Answer: Recursively with \sqrt{k} -merges:



A FAILED ATTEMPT AT CACHE-OBLIVIOUS MERGING

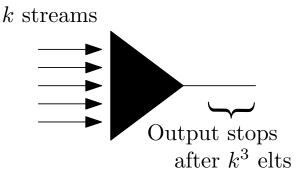
Question: How to we merge *k* streams?

Answer: Recursively with \sqrt{k} -merges:



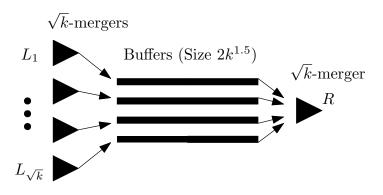
Wait a second... This reduces to normal merge sort!

k-Mergers in Funnel Sort



- ► Merges *k* input streams
- Critical Caveat: Each invocation of k-merger only outputs k³ elements
- ► Full *k*-merge may require multiple invocations!

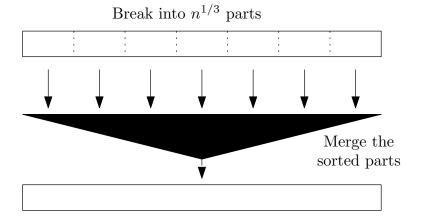
RECURSIVE *k*-MERGERS



Building *k*-merger out of \sqrt{k} -Mergers:

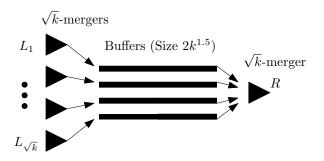
- Need to invoke R a total of $k^{1.5}$ times
- ▶ Before each invocation of *R*:
 - ► Check if any buffers less than half full
 - ▶ Invoke L_i 's to refill such buffers

SORTING WITH *k*-MERGERS



- ► **Step 1:** Break array into $n^{1/3}$ sub-arrays of size $n^{2/3}$
- ► **Step 2:** Recursively sort each sub-array
- ▶ **Step 3:** Perform a $n^{1/3}$ -merger on the sub-arrays

HOW MUCH WORK IN RAM MODEL?

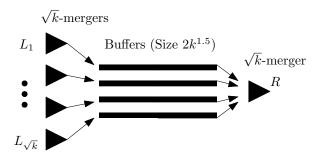


Key Insight: Essentially just merge sort with merges interleaved strangely.

Running Time in RAM Model: $O(n \log n)$

But What About in the Disk Access Model?

KEY PROPERTY OF k-MERGERS



Key Property: Each invocation of a k-merger has memory footprint $O(k^3)$.

Consequence: $M^{1/3}$ -mergers can be performed in memory.

RUNNING TIME IN DISK ACCESS MODEL

In RAM model, each $M^{1/3}$ -merger takes time:

$$\Theta(M \cdot \log M)$$
.

In Disk Access Model, each $M^{1/3}$ -merger takes time:

$$\Theta(M/B)$$
.

Full sorting time in disk access model:

$$\Theta\left(\frac{n\log n}{B\log M}\right) = \Theta\left(\frac{n}{B} \cdot \log_M n\right).$$

(Assuming $n \gg M \gg B$ and ignoring some details)

IS FUNNEL SORT PRACTICAL?

See the next talk!