
Cache-Oblivious Algorithms

Matteo Frigo, Charles Leiserson, Harald Prokop, Sridhar
Ramchandran

Slides Written and Presented by William Kuszmaul



THE DISK ACCESS MODEL

Three Parameters:

B Block Size in Words
M Internal Memory Size in Words
P Number of Concurrent Accesses Allowed

(P is not considered in this paper)

· · ·

Memory Disk

M

B
blocks Blocks of size B

Time is measured in disk operations.



FAST ALGORITHMS IN THE DISK ACCESS MODEL

nˆ n Matrix Multiplication: O
´

n3

B
?

M

¯

Sorting: Opn{B ¨ logM nq

Fast Fourier Transform: Opn{B ¨ logM nq

(Running times given for n " M " B)



THIS PAPER: CACHE-OBLIVIOUS ALGORITHMS

The Setup:
§ Algorithm oblivious to M and B
§ Still evaluated in Disk Access Model

· · ·

Memory Disk

? blocks Blocks of size ?

Question: Can we still get good running times?



WHY CACHE-OBLIVIOUS ALGORITHMS?

Advantages:
§ Don’t need to be tuned to specific machine
§ Can interact well with multiple caches concurrently
§ Algorithmically cool

Disadvantages:
§ Are they practical? (Actually they often are!)



ALGORITHMS IN THIS PAPER

nˆ n Matrix Multiplication: O
´

n3

B
?

M

¯

Sorting: Opn{B ¨ logM nq

Fast Fourier Transform: Opn{B ¨ logM nq

(Running times given for n " M " B)



Part 1: Matrix Multiplication



THE SETUP: MULTIPLYING TWO nˆ n MATRICES

×

A B

Simplifying Assumptions:
§ n " M " B
§ n is a power of two



NON-OBLIVIOUS TILING ALGORITHM

×

fΘ(
p
M)

The Algorithm:
§ Step 1: Break matrices into tiles of size ΘpMq
§ Step 2: Treat each tile as a “number” and do normal matrix

multiplication



NON-OBLIVIOUS TILING ALGORITHM

×

fΘ(
p
M)

Running Time:
§ Multiplying two tiles takes time:

OpM{Bq instead of Op
?

M3
q.

§ Total running time:

O
´

n3

B
?

M

¯

.



NON-OBLIVIOUS TILING ALGORITHM

×

fΘ(
p
M)

Running Time:
§ Multiplying two tiles takes time:

OpM{Bq instead of Op
?

M3
q.

§ Total running time:

O
´

n3

B
?

M

¯

.



CACHE-OBLIVIOUS MATRIX MULTIPLICATION

×

A

A1 A2

A3 A4

B

B1 B2

B3 B4

The Algorithm:
§ Step 1: Tile each matrix into fourths
§ Step 2: Treat each tile as a “number” and multiply the 2ˆ 2

matrices.
§ Recursion: When multiplying each Ai and Bj, recursively

repeat entire procedure.



CACHE-OBLIVIOUS MATRIX MULTIPLICATION

×

A

A1 A2

A3 A4

B

B1 B2

B3 B4

Running Time:
§ Simulates Standard Tiling: Once recursive tile-size

becomes ď M, the multiplications will be done in memory
§ Total running time:

O
´

n3

B
?

M

¯

.



HANDLING NON-SQUARE MATRICES

×

A

A1 A2

B

B1

B2

Key Idea: Split long direction in two and recurse.



REAL-WORLD COMPARISON TO NAIVE n3

ALGORITHM

Cache-Oblivious Algorithms 4:19

Fig. 5. Average time taken to multiply two N× N matrices, divided by N3.

base cases were “coarsened” by inlining the recursion near the leaves to increase their
size and overcome the overhead of procedure calls. (A good research problem is to
determine an effective compiler strategy for coarsening base cases automatically.)

Although these results must be considered preliminary, Figure 4 strongly indicates
that the recursive algorithm outperforms the iterative algorithm throughout the range
of matrix sizes. Moreover, the iterative algorithm behaves erratically, apparently due
to so-called “conflict” misses [Hennessy and Patterson 1996, p. 390], where limited
cache associativity interacts with the regular addressing of the matrix to cause sys-
tematic interference. Blocking the iterative algorithm should help with conflict misses
[Lam et al. 1991], but it would make the algorithm cache aware. For large matrices,
the recursive algorithm executes in less than 70% of the time used by the iterative
algorithm, even though the transpose problem exhibits no temporal locality.

Figure 5 makes a similar comparison between the naive iterative matrix-
multiplication algorithm, which uses three nested loops, with the O(n3)-work recursive
REC-MULT algorithm described in Section 2. This problem exhibits a high degree of
temporal locality, which REC-MULT exploits effectively. As the figure shows, the aver-
age time used per integer multiplication in the recursive algorithm is almost constant,
which for large matrices, is less than 50% of the time used by the iterative variant. A
similar study for Jacobi multipass filters can be found in Prokop [1999].

8. RELATED WORK

In this section, we discuss the origin of the notion of cache-obliviousness. We also give
an overview of other hierarchical memory models.

Our research group at MIT noticed as far back as 1994 that divide-and-conquer
matrix multiplication was a cache-optimal algorithm that required no tuning, but
we did not adopt the term “cache-oblivious” until 1997. This matrix-multiplication
algorithm, as well as a cache-oblivious algorithm for LU-decomposition without piv-
oting, eventually appeared in Blumofe et al. [1996]. Shortly after leaving our re-
search group, Toledo [1997] independently proposed a cache-oblivious algorithm for
LU-decomposition with pivoting. For n × n matrices, Toledo’s algorithm uses �(n3)
work and incurs �(1 + n2/B + n3/B

√
M) cache misses. Our group has produced an FFT

library called FFTW [Frigo 1999; Frigo and Johnson 1998], which employs a register-
allocation and scheduling algorithm inspired by our cache-oblivious FFT algorithm.
The general idea that divide-and-conquer enhances memory locality has been known
for a long time [Singleton 1969]. Other researchers [Chatterjee et al. 1999b; Frens and
Wise 1997] have also observed that recursive algorithms exhibit performance advan-
tages over iterative algorithms for computers with caches.

Previous theoretical work on understanding hierarchical memories and the I/O-
complexity of algorithms has been studied in cache-aware models lacking an automatic
replacement strategy, although Carter and Gatlin [1998] and Sen et al. [2002] are ex-
ceptions. Hong and Kung [1981] use the red-blue pebble game to prove lower bounds

ACM Transactions on Algorithms, Vol. 8, No. 1, Article 4, Publication date: January 2012.

§ How does this compare to tiled algorithm? They don’t say.



WHY DO WE NEED M " B?
§ Tiling algorithms require M ě B2.
§ Known as the tall cache assumption because means:

Number of blocks in cache ě Size of each block

Why we need it:

fΘ(
p
M)

fNeed this to be Ω(B)



WHY DO WE NEED M " B?
§ Tiling algorithms require M ě B2.
§ Known as the tall cache assumption because means:

Number of blocks in cache ě Size of each block

Why we need it:

fΘ(
p
M)
fNeed this to be Ω(B)



ELIMINATING THE TALL CACHE ASSUMPTION

The Key Idea: Change how we store matrices!
Cache-Oblivious Algorithms 4:3

Fig. 2. Layout of a 16×16 matrix in (a) row major, (b) column major, (c) 4×4-tiled, and (d) bit-interleaved
layouts.

To illustrate the notion of cache awareness, consider the problem of multiplying
two n× n matrices A and B to produce their n× n product C. We assume that the
three matrices are stored in row-major order, as shown in Figure 2(a). We further
assume that n is “big,” that is, n > B, in order to simplify the analysis. The conven-
tional way to multiply matrices on a computer with caches is to use a tiled (or blocked)
algorithm [Golub and van Loan 1989, p. 45]. The idea is to view each matrix M as
consisting of (n/s)× (n/s) submatrices Mij (the tiles), each of which has size s× s, where
s is a tuning parameter. The following algorithm implements this strategy.

ALGORITHM: TILED-MULT(A , B, C, n)

1 for i← 1 to n/s
2 do for j← 1 to n/s
3 do for k← 1 to n/s
4 do ORD-MULT(Aik, Bkj, Cij, s)

The ORD-MULT(A , B, C, s) subroutine computes C← C+A B on s×s matrices using the
ordinary O(s3) algorithm. (This algorithm assumes for simplicity that s evenly divides
n, but in practice s and n need have no special relationship, yielding more complicated
code in the same spirit.)

Depending on the cache size of the machine on which TILED-MULT is run, the
parameter s can be tuned to make the algorithm run fast, and thus TILED-MULT
is a cache-aware algorithm. To minimize the cache complexity, we choose s to be
the largest value such that the three s × s submatrices simultaneously fit in cache.
An s × s submatrix is stored on �(s + s2/B) cache lines. From the tall-cache as-
sumption (1), we can see that s = �(

√
M). Thus, each of the calls to ORD-MULT

runs with at most M/B = �(s2/B) cache misses needed to bring the three matri-
ces into the cache. Consequently, the cache complexity of the entire algorithm is
�(1 + n2/B + (n/

√
M)3(M/B)) = �(1 + n2/B + n3/B

√
M), since the algorithm has to

read n2 elements, which reside on
⌈
n2/B

⌉
cache lines.

ACM Transactions on Algorithms, Vol. 8, No. 1, Article 4, Publication date: January 2012.

Cache-Oblivious Algorithms 4:3

Fig. 2. Layout of a 16×16 matrix in (a) row major, (b) column major, (c) 4×4-tiled, and (d) bit-interleaved
layouts.

To illustrate the notion of cache awareness, consider the problem of multiplying
two n× n matrices A and B to produce their n× n product C. We assume that the
three matrices are stored in row-major order, as shown in Figure 2(a). We further
assume that n is “big,” that is, n > B, in order to simplify the analysis. The conven-
tional way to multiply matrices on a computer with caches is to use a tiled (or blocked)
algorithm [Golub and van Loan 1989, p. 45]. The idea is to view each matrix M as
consisting of (n/s)× (n/s) submatrices Mij (the tiles), each of which has size s× s, where
s is a tuning parameter. The following algorithm implements this strategy.

ALGORITHM: TILED-MULT(A , B, C, n)

1 for i← 1 to n/s
2 do for j← 1 to n/s
3 do for k← 1 to n/s
4 do ORD-MULT(Aik, Bkj, Cij, s)

The ORD-MULT(A , B, C, s) subroutine computes C← C+A B on s×s matrices using the
ordinary O(s3) algorithm. (This algorithm assumes for simplicity that s evenly divides
n, but in practice s and n need have no special relationship, yielding more complicated
code in the same spirit.)

Depending on the cache size of the machine on which TILED-MULT is run, the
parameter s can be tuned to make the algorithm run fast, and thus TILED-MULT
is a cache-aware algorithm. To minimize the cache complexity, we choose s to be
the largest value such that the three s × s submatrices simultaneously fit in cache.
An s × s submatrix is stored on �(s + s2/B) cache lines. From the tall-cache as-
sumption (1), we can see that s = �(

√
M). Thus, each of the calls to ORD-MULT

runs with at most M/B = �(s2/B) cache misses needed to bring the three matri-
ces into the cache. Consequently, the cache complexity of the entire algorithm is
�(1 + n2/B + (n/

√
M)3(M/B)) = �(1 + n2/B + n3/B

√
M), since the algorithm has to

read n2 elements, which reside on
⌈
n2/B

⌉
cache lines.

ACM Transactions on Algorithms, Vol. 8, No. 1, Article 4, Publication date: January 2012.

Normal Ordering Cache-Oblivious Ordering



Part 2: Sorting



MERGESORT IN THE DISK ACCESS MODEL

Memory

Merged Output

M

2B
Inputs

f2B

Key Idea: Performing M
2B -way merges

§ Assign to each input stream a buffer of size 2B
§ Read a block from input stream when buffer ď half full
§ At each step output the B smallest elements in buffers



MERGESORT IN THE DISK ACCESS MODEL

Memory

Merged Output

M

2B
Inputs

f2B

Running Time:
§ OplogM{B nq levels of recursion
§ Each takes time Opn{Bq
§ Total Running Time: O

` n
B logM n

˘

(Assuming n " M " B)



CACHE-OBLIVIOUS SORTING

This paper introduces two algorithms:

Funnel Sort: A cache-oblivious merge sort
(We will focus on this one)

Modified Distribution Sort: Based on another
Disk-Access-Model Algorithm.



A FAILED ATTEMPT AT CACHE-OBLIVIOUS MERGING

Question: How to we merge k streams?

Answer: Recursively with
?

k-merges:

fp
k

fp
k

fp
k

Wait a second... This reduces to normal merge sort!



A FAILED ATTEMPT AT CACHE-OBLIVIOUS MERGING

Question: How to we merge k streams?

Answer: Recursively with
?

k-merges:

fp
k

fp
k

fp
k

Wait a second... This reduces to normal merge sort!



k-MERGERS IN FUNNEL SORT

k streams

f

Output stops

after k3 elts

§ Merges k input streams
§ Critical Caveat: Each invocation of k-merger

only outputs k3 elements
§ Full k-merge may require multiple invocations!



RECURSIVE k-MERGERS

Buffers (Size 2k1:5)
p

k-merger

p

k-mergers

L1

Lp

k

R

Building k-merger out of
?

k-Mergers:
§ Need to invoke R a total of k1.5 times
§ Before each invocation of R:

§ Check if any buffers less than half full
§ Invoke Li’s to refill such buffers



SORTING WITH k-MERGERS

Break into n
1=3 parts

Merge the

sorted parts

§ Step 1: Break array into n1{3 sub-arrays of size n2{3

§ Step 2: Recursively sort each sub-array
§ Step 3: Perform a n1{3-merger on the sub-arrays



HOW MUCH WORK IN RAM MODEL?

Buffers (Size 2k1:5)
p

k-merger

p

k-mergers

L1

Lp

k

R

Key Insight: Essentially just merge sort with merges
interleaved strangely.

Running Time in RAM Model: Opn log nq

But What About in the Disk Access Model?



KEY PROPERTY OF k-MERGERS

Buffers (Size 2k1:5)
p

k-merger

p

k-mergers

L1

Lp

k

R

Key Property: Each invocation of a k-merger has memory
footprint Opk3q.

Consequence: M1{3-mergers can be performed in memory.



RUNNING TIME IN DISK ACCESS MODEL

In RAM model, each M1{3-merger takes time:

ΘpM ¨ log Mq.

In Disk Access Model, each M1{3-merger takes time:

ΘpM{Bq.

Full sorting time in disk access model:

Θ

ˆ

n log n
B log M

˙

“ Θ
´ n

B
¨ logM n

¯

.

(Assuming n " M " B and ignoring some details)



IS FUNNEL SORT PRACTICAL?

See the next talk!


