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THE DISK ACCESS MODEL

Three Parameters:

B Block Size in Words
M Internal Memory Size in Words
" (P is not considered in this paper)
Memory Disk
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Time is measured in disk operations.



FAST ALGORITHMS IN THE DISK ACCESS MODEL

n x n Matrix Multiplication: O ( B:Z/SM)
Sorting: O(n/B - logyn)
Fast Fourier Transform: O(n/B - logy 1)

(Running times given for n » M » B)



THIS PAPER: CACHE-OBLIVIOUS ALGORITHMS

The Setup:
» Algorithm oblivious to M and B
» Still evaluated in Disk Access Model

Memory Disk
7T T 1T T ]
N f
7 blocks Blocks of size 7

Question: Can we still get good running times?



WHY CACHE-OBLIVIOUS ALGORITHMS?

Advantages:
» Don’t need to be tuned to specific machine
» Can interact well with multiple caches concurrently

» Algorithmically cool

Disadvantages:
» Are they practical? (Actually they often are!)



ALGORITHMS IN THIS PAPER

n x n Matrix Multiplication: O ( B:Z/SM)
Sorting: O(n/B - logyn)
Fast Fourier Transform: O(n/B - logy 1)

(Running times given for n » M » B)



Part 1: Matrix Multiplication



THE SETUP: MULTIPLYING TWO 1 x 1 MATRICES

A B

Simplifying Assumptions:
*»n>»>M>»B

» nisa power of two



NON-OBLIVIOUS TILING ALGORITHM
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The Algorithm:

» Step 1: Break matrices into tiles of size ©(M)

» Step 2: Treat each tile as a “number” and do normal matrix
multiplication



NON-OBLIVIOUS TILING ALGORITHM
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Running Time:

» Multiplying two tiles takes time:
O(M/B) instead of O(\/M3).



NON-OBLIVIOUS TILING ALGORITHM
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Running Time:
» Multiplying two tiles takes time:
O(M/B) instead of O(\/M3).

» Total running time:
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CACHE-OBLIVIOUS MATRIX MULTIPLICATION

A B
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The Algorithm:
» Step 1: Tile each matrix into fourths
> Step 2: Treat each tile as a “number” and multiply the 2 x 2
matrices.
> Recursion: When multiplying each A; and B;, recursively
repeat entire procedure.



CACHE-OBLIVIOUS MATRIX MULTIPLICATION
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Running Time:

» Simulates Standard Tiling: Once recursive tile-size
becomes < M, the multiplications will be done in memory

» Total running time:




HANDLING NON-SQUARE MATRICES

A B
AT A B
L2 B
By

Key Idea: Split long direction in two and recurse.



REAL-WORLD COMPARISON TO NAIVE #°
ALGORITHM
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Average time taken to multiply two N x N matrices, divided by N3.

» How does this compare to tiled algorithm? They don’t say.



WHY DO WE NEED M » B?

» Tiling algorithms require M > B2.
» Known as the tall cache assumption because means:
Number of blocks in cache > Size of each block



WHY DO WE NEED M » B?

» Tiling algorithms require M > B2.
» Known as the tall cache assumption because means:
Number of blocks in cache > Size of each block

Why we need it:
Need this to be Q(B)
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ELIMINATING THE TALL CACHE ASSUMPTION

The Key Idea: Change how we store matrices!
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Normal Ordering Cache-Oblivious Ordering



Part 2: Sorting



MERGESORT IN THE DISK ACCESS MODEL

QB{ i i i i i i i — Merged Output

Memory

Key Idea: Performing %-way merges
» Assign to each input stream a buffer of size 2B
» Read a block from input stream when buffer < half full
» At each step output the B smallest elements in buffers



MERGESORT IN THE DISK ACCESS MODEL

M
55 Inputs

QB{ i i i i i i i — Merged Output

Memory

Running Time:

> O(logyy/p 1) levels of recursion

» Each takes time O(n/B)

> Total Running Time: O (% logy, 1)
(Assuming n » M » B)



CACHE-OBLIVIOUS SORTING

This paper introduces two algorithms:

Funnel Sort: A cache-oblivious merge sort
(We will focus on this one)

Modified Distribution Sort: Based on another
Disk-Access-Model Algorithm.



A FAILED ATTEMPT AT CACHE-OBLIVIOUS MERGING

Question: How to we merge k streams?

Answer: Recursively with vk-merges:

Vil
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A FAILED ATTEMPT AT CACHE-OBLIVIOUS MERGING

Question: How to we merge k streams?

Answer: Recursively with vk-merges:
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Wait a second... This reduces to normal merge sort!



k-MERGERS IN FUNNEL SORT
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» Merges k input streams

» Critical Caveat: Each invocation of k-merger
only outputs k> elements

» Full k-merge may require multiple invocations!



RECURSIVE k-MERGERS

Vk-mergers
Ly Buffers (Size 2k!-%)
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Building k-merger out of v/k-Mergers:

» Need to invoke R a total of k!> times

» Before each invocation of R:

» Check if any buffers less than half full
» Invoke L;’s to refill such buffers

\/_ k-merger

>




SORTING WITH k-MERGERS

Break into n'/3 parts

L4

\/

> Step 1: Break array into n'/3 sub-arrays of size n%/>
» Step 2: Recursively sort each sub-array
> Step 3: Perform a n'/3-merger on the sub-arrays



HOW MUCH WORK IN RAM MODEL?

Vk-mergers
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Key Insight: Essentially just merge sort with merges
interleaved strangely.

Running Time in RAM Model: O(nlogn)

But What About in the Disk Access Model?



KEY PROPERTY OF k-MERGERS

Vk-mergers

L, Buffers (Size 2k!-%)
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Key Property: Each invocation of a k-merger has memory
footprint O(k®).

Consequence: M'/3-mergers can be performed in memory.



RUNNING TIME IN DISK ACCESS MODEL

In RAM model, each M'/3-merger takes time:

O(M -logM).

In Disk Access Model, each M'/3>-merger takes time:

O(M/B).

Full sorting time in disk access model:
nlogn n
=0 (-1 .
© (BlogM> © <B &M ”)

(Assuming n » M » B and ignoring some details)




IS FUNNEL SORT PRACTICAL?

See the next talk!



