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Memory Hierarchy

CPU Core

Registers

L1 Cache (on
chip, banked

L2 Cache Unified

L3 Cache (Unified

Main Memary

Typical cache sizes:

L1 Cache: 32kB — 64kB

L2 Cache: 256kB — 512kB

L3 Cache: 8MB - 32 MB
Main Memory: 4GB — 32 GB
Disk: Terabytes



Observations

»Memory accesses are usually the bottleneck in algorithms since CPU
is a lot faster than main memory

»Want to minimize the number of times we have get data from slow
memory by maximizing data reuse



Cache Aware vs Cache Oblivious

»Both have cache friendly access patterns.

»Cache aware algorithms depend on the parameters of the architecture
such as cache size and depth of hierarchy whereas cache oblivious
algorithms do not.

»Cache aware algorithms tend to be faster but are not portable without
retuning.

» We want speed of cache friendly access but portability of cache
oblivious algorithm.



Funnel Sort Algorithm Description

» Recursively sort n” contiguous arrays of n” items
»Merge the sorted sequences using a n”* -merger
»Base case is a merger with k = 2

»Similar to merge sort but different merging routine



Funnel Sort Picture

Taken from 6.172 lecture 15 Fall 2018



Sorting bounds

Quick sort
» Work = O(nlgn)
» Cache usage = O(n/B)lgn)

Funnel sort
»Work = O(nlgn)
» Cache = O((n/B)logyn)



Issues with Funnel Sort

»In practice it is not always possible to split K-Funnel into VK bottom
funnels, it may lead to rounding errors.

»VEB layout performs well for binary trees but does not perform
well for complex data structures.



Lazy Funnel Sort

»To overcome rounding problem, we use binary mergers
» Takes two sorted streams and delivers an output of 2 sorted streams

»VEB layout is very friendly to binary trees

» Analysis of algorithm remains the same despite changes



Lazy k-Funnel Sort Diagram

ProcedureFill(v)
while out-buffer not full
Output if left in-buffer empty
N Fill(left child)
— if right in-buffer empty
o e n Fill(right child)
= perform one merge step




Algorithm Parameters

> Lazy funnel sort recursively sorts N(*/d) segments of size N(1-7/d) then
performs a N(1/d) merge

> o.— controls the buffer size



Optimizations: k-Merger Structure

»Memory layout
» BFS, DFS, vEB
»Nodes and buffers separate/together

» Tree navigation method
» Pointers, address calculations

» Styles for invocation
»Recursive, iterative



Optimal k-Merger Structure

»Swept k in [15, 270] and performed (20 000 000 / k3) merges

»0n 3 architectures found best configuration for merge structure was:
» Recursive invocation
» Pointer-based navigation
»VEB layout
»Nodes and buffers separate



Optimizations: Choosing the right merger

» Minimum of elements left in each input buffer and the space
remaining in output buffer

» Optimal merging algorithm
»Hybrid of optimal merging algorithm and heuristic
»Simple

»Simple was the fastest probably due to hardware branch predictions



Optimization: Degree of Merges

»Simple merge by comparing first elements
»Tournament trees

»Increasing merge degree decreases height of the tree meaning less
tree traversals and data movement down the tree.



Tournament trees

Taken from 6.172 lecture 15 Fall 2018



Optimal Merge pattern

»Found 4 or 5 way mergers were optimal. Tournament trees have too
large of an overhead to be worthwhile.



Optimization: Caching Mergers

» Each of the calls of the outer recursion use the same size k-merger.
Therefore, instead of remaking the merger, it was simply reused for
each recursion.

» Achieved speedups of 3-5% on all architectures



Other Optimizations

»Sorting Algorithm for base case:
»GCC quick sort to avoid making mergers with height less than 2

»Tuning parameters alpha (to control the buffer size) and d (to control
the progression of the recursion)



Results

»Performance depended on architecture

»Quick sort was better for architectures with very fast memory buses or slower
CPUs so memory was not as much of a bottleneck

» Funnel sort generally outperformed quicksort for larger n
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Results — Faster Memory Arch

Uniform pairs - Pentium 4
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Results — QS Memory Sensitivity

Uniform pairs - Iltanium 2
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Results — External Sorting
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