
Engineering A Cache
Oblivious Sorting Algorithm

Gerth Brodal, Rolf Fagerberg and Kristoffer Vinther

Presenter: Rawn Henry
February 25 2019

Memory Hierarchy
Typical cache sizes:

L1 Cache: 32kB – 64kB
L2 Cache: 256kB – 512kB
L3 Cache: 8MB – 32 MB
Main Memory: 4GB – 32 GB
Disk: Terabytes

Observations

ØMemory accesses are usually the bottleneck in algorithms since CPU
is a lot faster than main memory

ØWant to minimize the number of times we have get data from slow
memory by maximizing data reuse

Cache Aware vs Cache Oblivious

ØBoth have cache friendly access patterns.
ØCache aware algorithms depend on the parameters of the architecture

such as cache size and depth of hierarchy whereas cache oblivious
algorithms do not.

ØCache aware algorithms tend to be faster but are not portable without
retuning.

Ø We want speed of cache friendly access but portability of cache
oblivious algorithm.

Funnel Sort Algorithm Description

ØRecursively sort n⅓ contiguous arrays of n⅔ items
ØMerge the sorted sequences using a n⅓ -merger
ØBase case is a merger with k = 2
ØSimilar to merge sort but different merging routine

Funnel Sort Picture

Taken from 6.172 lecture 15 Fall 2018

Sorting bounds

Quick sort
Ø Work = O(nlgn)
ØCache usage = O(n/B)lgn)

Funnel sort
ØWork = O(nlgn)
ØCache = O((n/B)logMn)

Issues with Funnel Sort

ØIn practice it is not always possible to split K-Funnel into √K bottom
funnels, it may lead to rounding errors.

ØvEB layout performs well for binary trees but does not perform
well for complex data structures.

Lazy Funnel Sort

ØTo overcome rounding problem, we use binary mergers
ØTakes two sorted streams and delivers an output of 2 sorted streams

ØvEB layout is very friendly to binary trees

ØAnalysis of algorithm remains the same despite changes

Lazy k-Funnel Sort Diagram

Algorithm Parameters

ØLazy funnel sort recursively sorts N(1/d) segments of size N(1-1/d) then
performs a N(1/d) merge

Ø α – controls the buffer size

Optimizations: k-Merger Structure

ØMemory layout
ØBFS, DFS, vEB
ØNodes and buffers separate/together

ØTree navigation method
ØPointers, address calculations

ØStyles for invocation
ØRecursive, iterative

Optimal k-Merger Structure

ØSwept k in [15, 270] and performed (20 000 000 / k3) merges
ØOn 3 architectures found best configuration for merge structure was:

ØRecursive invocation
ØPointer-based navigation
ØvEB layout
ØNodes and buffers separate

Optimizations: Choosing the right merger

ØMinimum of elements left in each input buffer and the space
remaining in output buffer

ØOptimal merging algorithm
ØHybrid of optimal merging algorithm and heuristic
ØSimple

ØSimple was the fastest probably due to hardware branch predictions

Optimization: Degree of Merges

ØSimple merge by comparing first elements
ØTournament trees

ØIncreasing merge degree decreases height of the tree meaning less
tree traversals and data movement down the tree.

Tournament trees

Taken from 6.172 lecture 15 Fall 2018

Optimal Merge pattern

ØFound 4 or 5 way mergers were optimal. Tournament trees have too
large of an overhead to be worthwhile.

Optimization: Caching Mergers

ØEach of the calls of the outer recursion use the same size k-merger.
Therefore, instead of remaking the merger, it was simply reused for
each recursion.

ØAchieved speedups of 3-5% on all architectures

Other Optimizations

ØSorting Algorithm for base case:
ØGCC quick sort to avoid making mergers with height less than 2

ØTuning parameters alpha (to control the buffer size) and d (to control
the progression of the recursion)

Results

ØPerformance depended on architecture
ØQuick sort was better for architectures with very fast memory buses or slower

CPUs so memory was not as much of a bottleneck
ØFunnel sort generally outperformed quicksort for larger n

Results

Results – Faster Memory Arch

Results – QS Memory Sensitivity

Results – External Sorting

