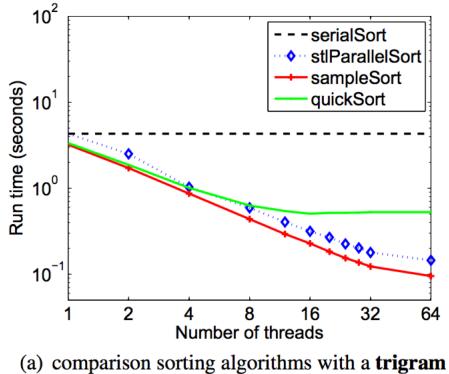
Multicore Triangle Computations Without Tuning

Julian Shun and Kanat Tangwongsan

Presentation is based on paper published in International Conference on Data Engineering (ICDE), 2015

Parallel Cache-Oblivious Sorting



string of length 10⁷

- 32 cores with hyper-threading
- Cache-oblivious sample sort gets near linear speedup and outperforms stlParallelSort by 1.2 to 2.4x

Triangle Computations

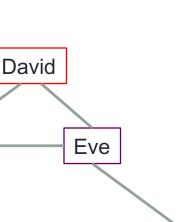
- Triangle Counting
 Count = 3
 - Other variants:
 - Triangle listing
 - Local triangle counting/clustering coefficients
 - Triangle enumeration
 - Approximate counting
 - Analogs on directed graphs
 - Numerous applications...
 - Social network analysis, Web structure, spam detection, outlier detection, dense subgraph mining, 3-way database joins, etc.

Carol

Bob

Alice

Need fast triangle computation algorithms!



Eve Fred Greg Hannah

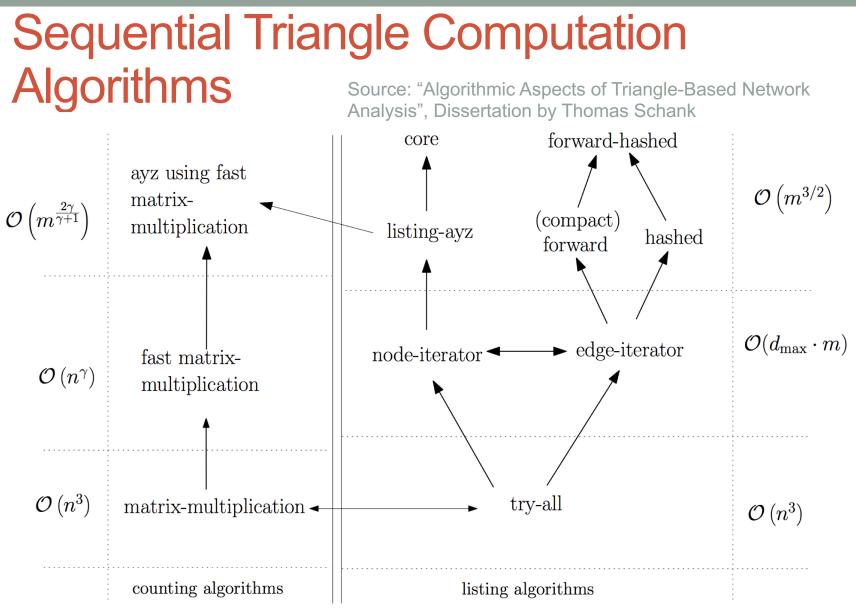
Sequential TriangleComputationAlgorithmsV = # vertices

- Sequential algorithms for exact counting/listing
 - Naïve algorithm of trying all triplets O(V³) work
 - Node-iterator algorithm [Schank] O(VE) work
 - Edge-iterator algorithm [Itai-Rodeh] O(VE) work
 - Tree-lister [Itai-Rodeh], forward/compact-forward [Schank-Wagner, Lapaty]

 $O(E^{1.5})$ work

- Sequential algorithms via matrix multiplication
 - $O(V^{2.37})$ work compute A³, where A is the adjacency matrix
 - O(E^{1.41}) work [Alon-Yuster-Zwick]
 - These require superlinear space

E = # edges



What about parallel algorithms?

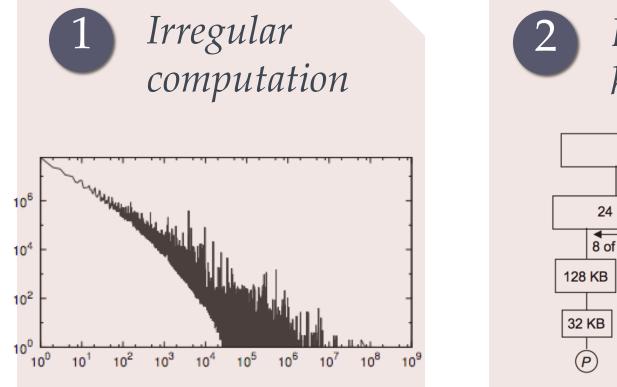
5

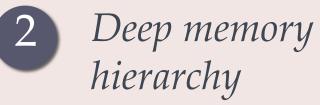
Parallel Triangle Computation Algorithms

- Most designed for distributed memory
 - MapReduce algorithms [Cohen '09, Suri-Vassilvitskii '11, Park-Chung '13, Park et al. '14]
 - MPI algorithms [Arifuzzaman et al. '13, Graphlab]
- What about shared-memory multicore?
 - Multicores are everywhere!
 - Node-iterator algorithm [Green et al. '14]
 - O(VE) work in worst case

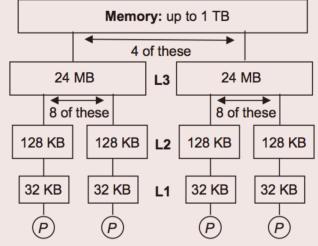
 Can we obtain an O(E^{1.5}) work shared-memory multicore algorithm?

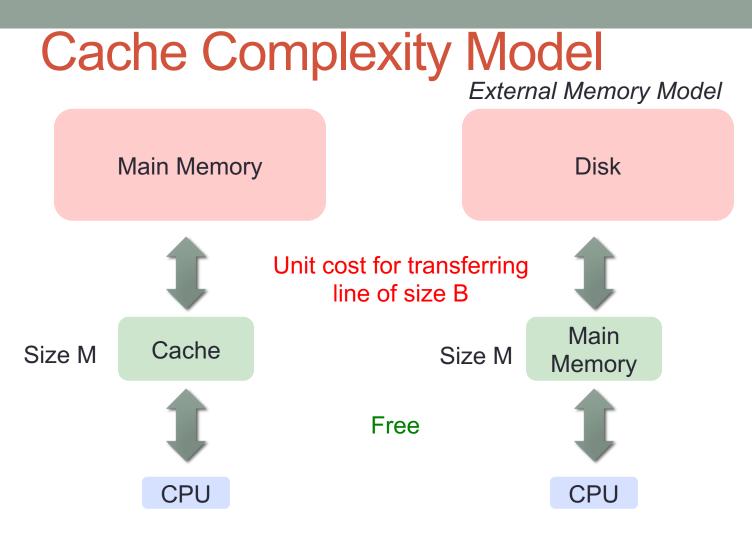
Triangle Computation: Challenges for Shared Memory Machines



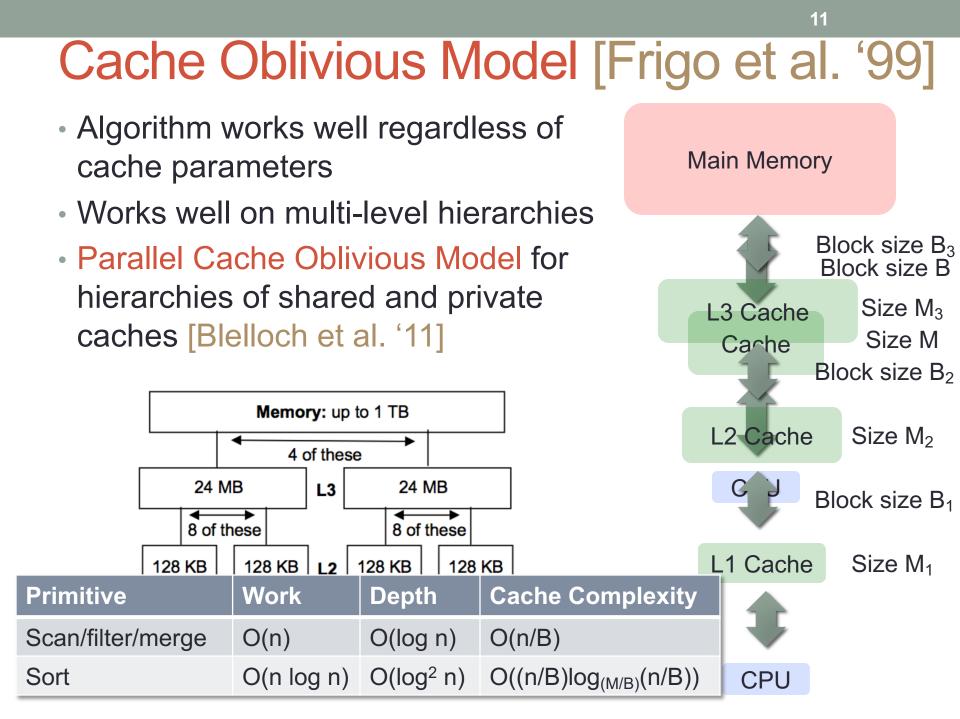


7





Complexity = # cache misses disk accesses Cache-aware (external-memory) algorithms: have knowledge of M and B Cache-oblivious algorithms: no knowledge of parameters



External-Memory and Cache-Oblivious Triangle Computation

- All previous algorithms are sequential
- External-memory (cache-aware) algorithms
 - Natural-join
 - Node-iterator [Dementiev '06]
 - Compact-forward [Menegola '10]
 - [Chu-Cheng '11, Hu et al. '13]

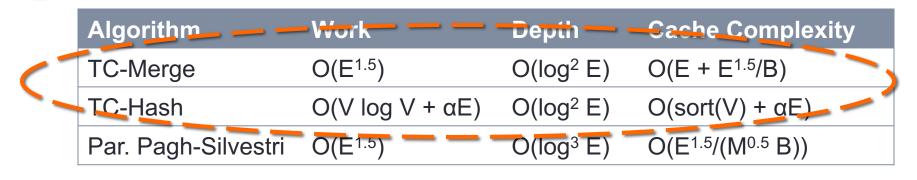
O(E³/(M² B)) I/O's

- O((E^{1.5}/B) log_{M/B}(E/B)) I/O's
- O(E + E^{1.5}/B) I/O's
- O(E²/(MB) + #triangles/B) I/O's
- External-memory and cache-oblivious
 - [Pagh-Silvestri '14]

- O(E^{1.5}/(M^{0.5} B)) I/O's or cache misses
- Parallel cache-oblivious algorithms?

Our Contributions

Parallel Cache-Oblivious Triangle Counting Algs



V = # vertices M = cache size E = # edges B = line size α = arboricity (at most E^{0.5}) sort(n) = (n/B) log_{M/B}(n/B)

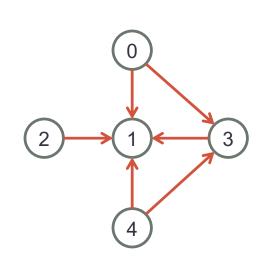
2

Extensions to Other Triangle Computations: Enumeration, Listing, Local Counting/Clustering Coefficients, Approx. Counting, Variants on Directed Graphs

Extensive Experimental Study

Sequential Triangle Counting (Exact)

(Forward/compact-forward algorithm)

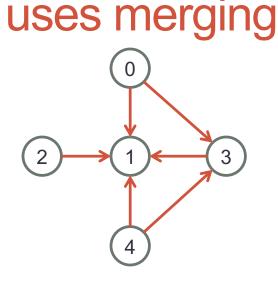


Rank vertices by degree (sorting) Return A[v] for all v storing higher ranked neighbors

for each vertex v: for each w in A[v]: count += intersect(A[v], A[w])

Gives all triangles (v, w, x) where rank(v) < rank(w) < rank(x) Work = O(E^{1.5}) [Schank-Wagner '05, Latapy '08]

Proof of O(E^{1.5}) work bound when intersect



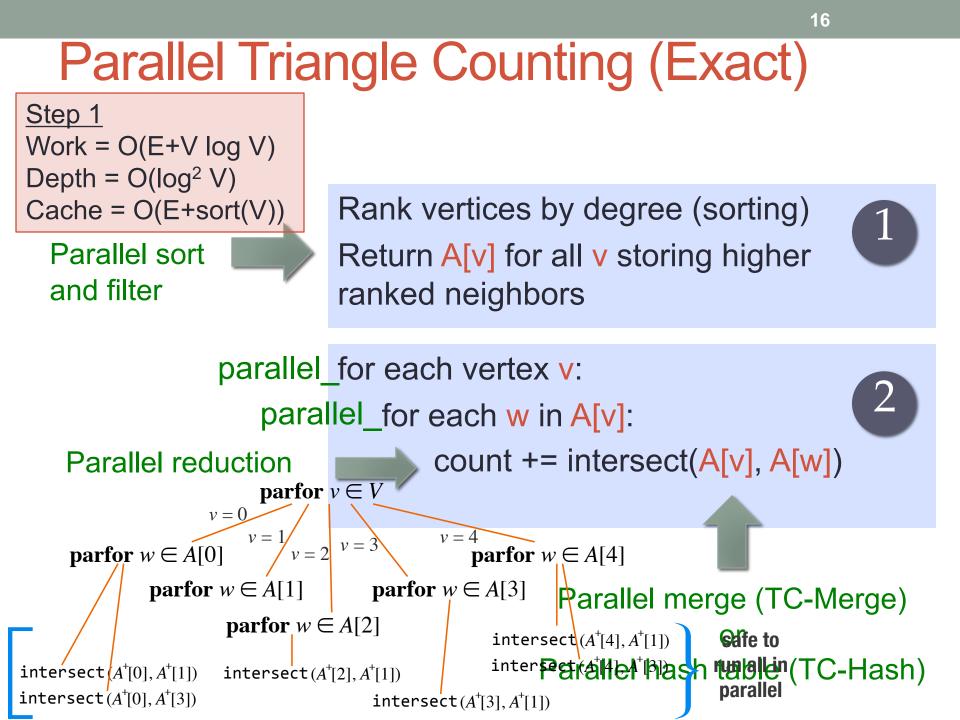
Rank vertices by degree (sorting) Return A[v] for all v storing higher ranked neighbors

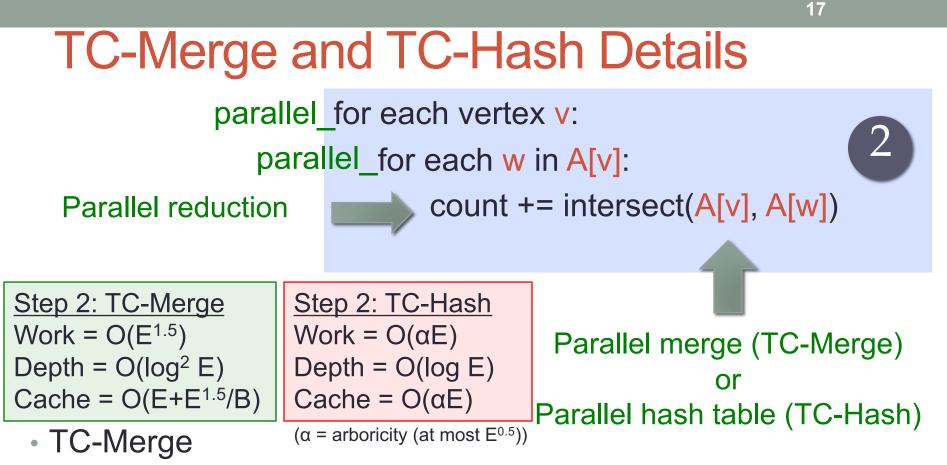
for each vertex v:

for each w in A[v]:

count += intersect(A[v], A[w])

- Step 1: O(E+V log V) work
- Step 2:
 - For each edge (v,w), intersect does O(d⁺(v) + d⁺(w)) work
 - For all v, $d^+(v) \le E^{0.5}$
 - If d⁺(v) > E^{0.5}, each of its higher degree neighbors also have degree > E^{0.5} and total number of directed edges > E, a contradiction
 - Total work = $E * O(E^{0.5}) = O(E^{1.5})$





- Preprocessing: sort adjacency lists
- Intersect: use a parallel and cache-oblivious merge based on divideand-conquer [Blelloch et al. '10, Blelloch et al. '11]
- TC-Hash
 - Preprocessing: for each vertex, create parallel hash table storing edges [Shun-Blelloch '14]
 - Intersect: scan smaller list, querying hash table of larger list in parallel

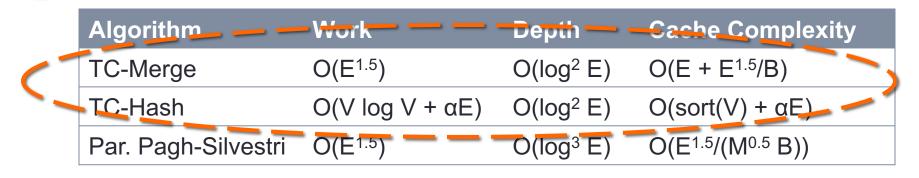
Comparison of Complexity Bounds

Algorithm	Work	Depth	Cache Complexity
TC-Merge	O(E ^{1.5})	O(log ² E)	O(E + E ^{1.5} /B) (oblivious)
TC-Hash	$O(V \log V + \alpha E)$	O(log ² E)	O(sort(V) + αE) <i>(oblivious)</i>
Par. Pagh-Silvestri	O(E ^{1.5})	O(log ³ E)	O(E ^{1.5} /(M ^{0.5} B)) <i>(oblivious)</i>
Chu-Cheng '11, Hu et al. '13	O(E log E + E²/M + αE)		O(E²/(MB) + #triangles/B) <i>(aware)</i>
Pagh-Silvestri '14	O(E ^{1.5})		O(E ^{1.5} /(M ^{0.5} B)) (oblivious)
Green et al. '14	O(VE)	O(log E)	

V = # vertices M = cache size E = # edges B = line size α = arboricity (at most E^{0.5}) sort(n) = (n/B) log_{M/B}(n/B)

Our Contributions

Parallel Cache-Oblivious Triangle Counting Algs



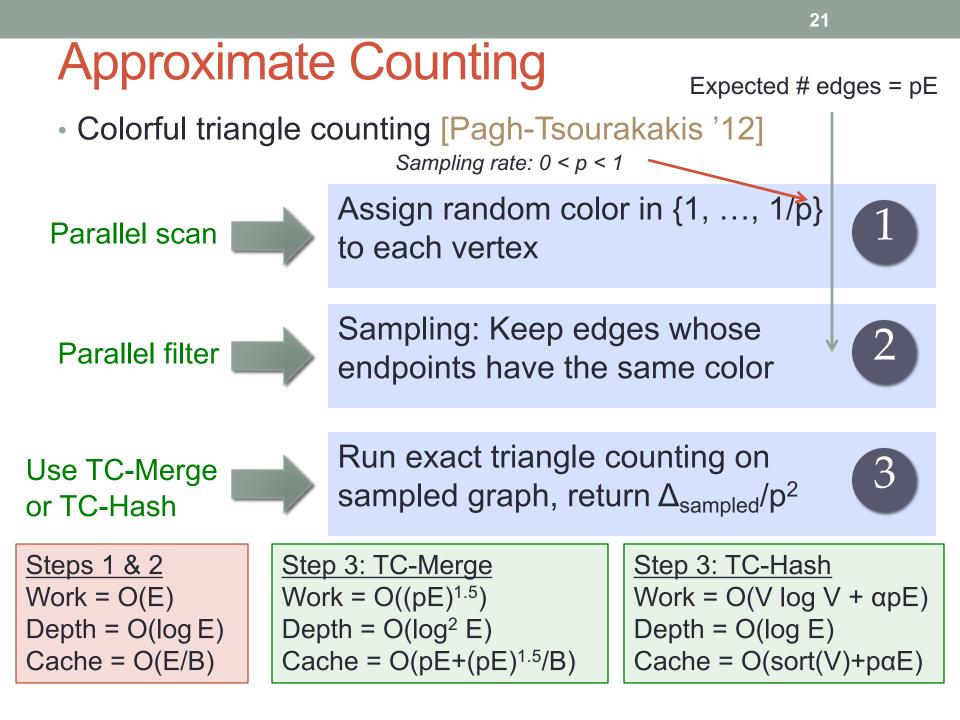
V = # vertices M = cache size E = # edges B = line size α = arboricity (at most E^{0.5}) sort(n) = (n/B) log_{M/B}(n/B)

2 Extensions to Other Triangle Computations: Enumeration, Listing, Local Counting/Clustering Coefficients Approx. Counting, Variants on Directed Graphs

Extensive Experimental Study

Extensions of Exact Counting Algorithms

- Triangle enumeration
 - Call emit function whenever triangle is found
 - Listing: add to hash table to list; return contents at the end
 - Local counting/clustering coefficients: atomically increment count of three triangle endpoints
- Directed triangle counting/enumeration
 - Keep separate counts for different types of triangles
- Approximate counting
 - Use colorful triangle sampling scheme to create smaller sub-graph [Pagh-Tsourakakis '12]
 - Run TC-Merge or TC-Hash on sub-graph with pE edges (0 and return #triangles/p² as estimate



Our Contributions

1

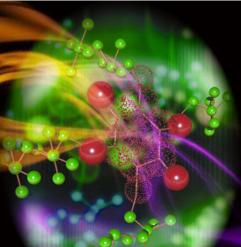
Parallel Cache-Oblivious Triangle Counting Algs

Algorithm	Work	Depth	Cache Complexity
TC-Merge	O(E ^{1.5})	O(log ² E)	O(E + E ^{1.5} /B)
TC-Hash	$O(V \log V + \alpha E)$	O(log ² E)	$O(sort(V) + \alpha E)$
Par. Pagh-Silvestri	O(E ^{1.5})	O(log ³ E)	O(E ^{1.5} /(M ^{0.5} B))

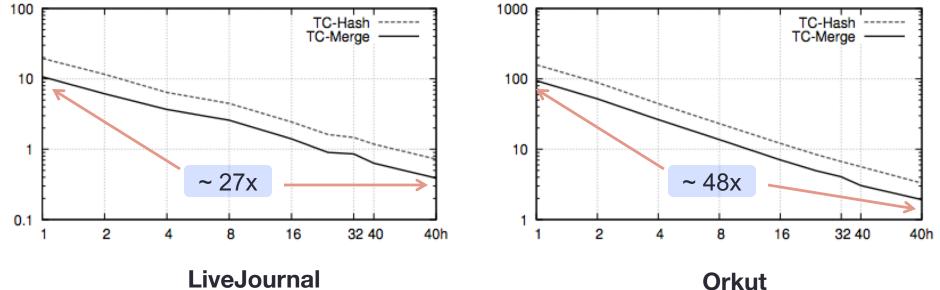
V = # vertices M = cache size E = # edges B = line size α = arboricity (at most E^{0.5}) sort(n) = (n/B) log_{M/B}(n/B)

Experimental Setup

- Implementations using Intel Cilk Plus
- 40-core Intel Nehalem machine (with 2-way hyper-threading)
 - 4 sockets, each with 30MB shared L3 cache, 256KB private L2 caches
- Sequential TC-Merge as baseline (faster than existing sequential implementations)
- Other multicore implementations: Green et al. and GraphLab
- Our parallel Pagh-Silvestri algorithm was not competitive
- Variety of real-world and artificial graphs



Both TC-Merge and TC-Hash scale well with # of cores:

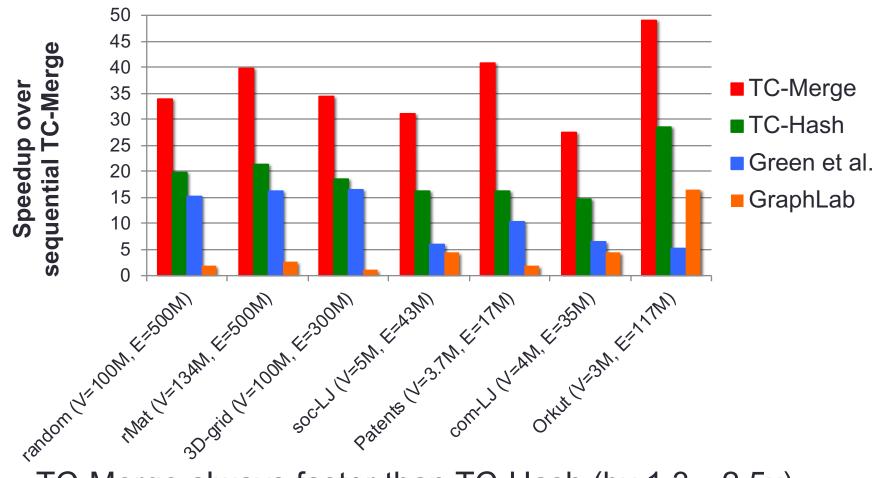


LiveJournal 4M vtxes, 34.6M edges

3M vtxes, 117M edges

40-core (with hyper-threading) Performance

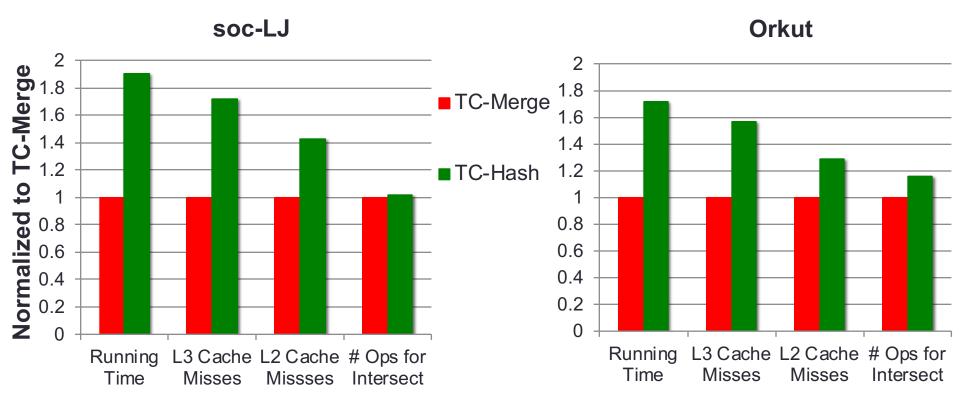
25



- TC-Merge always faster than TC-Hash (by 1.3—2.5x)
- TC-Merge always faster than Green et al. or GraphLab (by 2.1—5.2x)

Why is TC-Merge faster than TC-Hash?

26



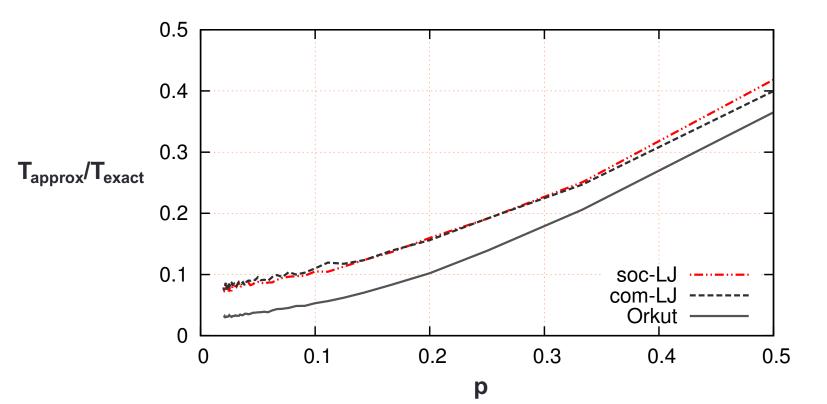
- TC-Hash less cache-efficient than TC-Merge
- Running time more correlated with cache misses than work

Comparison to existing counting algs.

Twitter graph (41M vertices, 1.2B undirected edges, 34.8B triangles)

- Yahoo graph (1.4B vertices, 6.4B edges, 85.8B triangles) on 40 cores: TC-Merge takes 78 seconds
 - Approximate counting algorithm achieves 99.6% accuracy in 9.1 seconds

Approximate counting



p=1/25	Accuracy	T _{approx}	T _{approx} /T _{exact}
Orkut (V=3M, E=117M)	99.8%	0.067sec	0.035
Twitter (V=41M, E=1.2B)	99.9%	2.4sec	0.043
Yahoo (V=1.4B, E=6.4B)	99.6%	9.1sec	0.117

Conclusion

Algorithm	Work	Depth	Cache Complexity
TC-Merge	O(E ^{1.5})	O(log ² E)	O(E + E ^{1.5} /B)
TC-Hash	$O(V \log V + \alpha E)$	O(log ² E)	$O(sort(V) + \alpha E)$
Par. Pagh-Silvestri	O(E ^{1.5})	O(log ³ E)	O(E ^{1.5} /(M ^{0.5} B))

- Simple multicore algorithms for triangle computations are provably work-efficient, low-depth and cache-friendly
- Implementations require no load-balancing or tuning for cache
- Experimentally outperforms existing multicore and distributed algorithms
- Future work: Design a practical parallel algorithm achieving O(E^{1.5}/(M^{0.5} B)) cache complexity