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Quicksort
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commons.wikimedia.org/wiki/File:Quicksort.gif

* Finds pivots in the array
* Recursively sorts the sides of the pivots

* Expected runtime: o(n logn)

- . algorithm quicksort(A, lo, hi) is
Almost in-place if 1o < hi then
p := partition(A, lo, hi)
quicksort(A, lo, p - 1)

. Pa ra”ellzable quicksort(A, p + 1, hi)

algorithm partition(A, lo, hi) is
* Small amount of code pivot = A[hi]
i:=1o
for j := 1o to hi - 1 do
if A[j] < pivot then
swap A[i] with A[]]
i:=1i+1
swap A[i] with A[hi]
return i

https://en.wikipedia.org/wiki/Quicksort




W e Super Scalar
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Super Scalar Samplesort Algorithm

* Like quicksort, with multiple pivot points
chosen

sampleSort(A|[1..n), k, p)
if n/k < threshold then smallSort(A) // if average bucket size is below a threshold switch to e.g. quicksort

* Sampling

select § = [Sy,..., Syik—1)] randomly from A // select samples
sort § // sort sample
[80,815 - 8p-1,8p]  [—00, Sk, Sak, ..., Sp-1)k, 0] // select splitters

* Local Classification i )
find j such that 8;; < a <s;
place a in bucket b;

M / i /
e Block Permutation eturn cameatemte(cmpieBort(h), .. sompleort(ss)

e Cleanup



Sampling

* Determines the bucket boundaries

e Sample in front of input array (keep in-place)

e sort ak — 1 randomly sampled input elements
* Pivots picked equidistantly from sorted sample
* Elements stored in a binary search tree

* The left successor of a; is a,; and its right successor is
A2i+1

Binary Search Tree

RN
27

https://www.tutorialspoint.com/data_structures_algorith
ms/binary_search_tree.htm



Local Classification

* Groups input blocks such that all elements in
each block belong to the same bucket

* Write buffer to array A when full

* Block A gets t stripes of equal size-one for each
thread

* Each element in stripe classified into one of the
k buckets

b 2 1
-
e (] (] B
by 2 3

Figure 1 Local classification. Blue elements have already been classified, with different shades
mdicating different buckets. Unprocessed dlements are green. Here, the next element (in dark green)
has been determined to belong to bucket by. As that buffer block is already full, we first write it
mto the armay A, then write the new element into the now empty buffer.
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Figure 2 Input array and block buffers of the last two threads after local classification.




Block Permutation

T I-? l"i’-l | I“i’-l-'fl--l -‘_"lj:[ e Rearrange block in input array
' [ 1 t t
! o B e * Perform prefix sum compute exact boundaries
e e T o ) e e (e s . 5 7o of buckets
empty (white).
* Allocate a single overflow block instead of
writing to final block
2 7 R
AT, T V) )  Invariant: each bucket has correct blocks,

Swap s r‘_-]/* : E), processed blocks, empty blocks

(a) Swapping a block into its correct position.  (b) Moving a block into an empty position,
followed by refilling the swap buffer.

* Threads swap 2 blocks at a time until sorted

Figure 4 Block permutation examples.



Cleanup

* Blocks may span bucket boundaries

* May have split heads and tails

e * Threads look at heads/tails from left to right

P ) o i NS
: e Re-arrange when necessary
Buffer blocks of b; bis |:|

Thread 1 Thread 2 Thread 1 Thread 2 Y leflcult Implementatlon

Figure 5 An example of the steps performed during cleanup.

e Similar to many 172 projects with bit swapping



Bringing It

Together:
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|[dentical Keys

* Many inputs of same key into many levels of recursion

* Turn such inputs into “easy” instances by introducing separate buckets for elements
identical to pivots

e Keys occurring more then n k times are likely to become pivots

* Single addition comparison to find whether element goes to equality bucket



Making S3 in place

* Mark beginning of each bucket by
storing largest element in first entry

i:=1 —— first element of current bucket

jomntl —— first clement of next bucket * Find next larger element signals end of
while i < n do

if _]<— i < ng then smallSort(a,i.j—1); i: =7 —— base case b Uuc ket

(?lse part:'tio'n(a. i,j—1) . . - partition.ﬁrs:t unsorted bucket . ' . .

j = searchNextLargest(A[i]. A,i + 1,n) —— find beginning of next bucket ° |Og tl me Wlth ex po ne nt ia |/b| na ry

search



e Coarsening recursion with insertion sort for

small input e k = 256 buckets

* Adaptive number of buckets for lower levels  *a = 0.2 log(n) oversampling
so don’t have many buckets of few elements * B = 1 overpartitioning

*ng = 16 base case-switch to insertion
* b = 2KiB block size



IPS*o Analysis

* Assuming: b = 8(tB) (buffer block size)
*M = Q(ktB)
* Base Case size:ng = 0(M)
e n = Q(max(k, t)t*B)
* |/O-complexity: O (ilogk (i)) (with high
. tB No
probability)
* Additional Space: O (kbt + log;, ni)
0

e Usually first term dominates, need to
remove log(n) term for in-place

e Variables:
e t: number of threads
* M: private cache size of thread

* B: block size for main memory access



Results

 Sequential: IS*o is faster by a factor
of about 1.2

* Parallel: faster by factor 2.5 on
almost all algorithms

* On inputs of 219to 232
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(a) AMDI1S-Uniform (b) Intel4S-Uniform
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* Can lag behind other algorithms

(g) Intel2S-Uniform-Pairs . R s L on smaller inputs
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* Beats competition on large inputs
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Multi-Core Results
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Further Work/Questions

* Possibility of reducing the amount of code
* Reducing time for sequentially sorting large objects
* Fine Tuning parameters

e Adoption into a language?
= Java has dual-pivot quicksort
= C++ uses multi-way merge for parallel

* VViable alternate to Quicksort (over 50 years old)?



