
In-place
Super Scalar
Samplesort

Tim Kralj

Outline
• Quicksort

• Super Scalar Samplesort

• In-place Super Scalar Samplesort (IPS4o) Analysis

• Results

• Further work/Questions

Quicksort
• Finds pivots in the array

• Recursively sorts the sides of the pivots

• Expected runtime: !(# log #)
• Almost in-place

• Parallelizable

• Small amount of code

https://en.wikipedia.org/wiki/Quicksort

commons.wikimedia.org/wiki/File:Quicksort.gif

Super Scalar
Samplesort
• Cache efficient

• Non-in-place

• Instructional Parallelism

• Avoids branch mis-predictions

• Uses k buckets and t threads

Super Scalar Samplesort Algorithm
• Like quicksort, with multiple pivot points
chosen

• Sampling

• Local Classification

• Block Permutation

• Cleanup

Sampling
• Determines the bucket boundaries

• Sample in front of input array (keep in-place)

• sort !" − 1 randomly sampled input elements

• Pivots picked equidistantly from sorted sample

• Elements stored in a binary search tree

• The left successor of %& is %'& and its right successor is
%'&() https://www.tutorialspoint.com/data_structures_algorith

ms/binary_search_tree.htm

Binary Search Tree

27 14 35 10 19 31 42

Local Classification
• Groups input blocks such that all elements in
each block belong to the same bucket

•Write buffer to array A when full

• Block A gets t stripes of equal size-one for each
thread

• Each element in stripe classified into one of the
! buckets

Block Permutation
• Rearrange block in input array

• Perform prefix sum compute exact boundaries
of buckets

• Allocate a single overflow block instead of
writing to final block

• Invariant: each bucket has correct blocks,
processed blocks, empty blocks

• Threads swap 2 blocks at a time until sorted

Cleanup
• Blocks may span bucket boundaries

•May have split heads and tails

• Threads look at heads/tails from left to right

• Re-arrange when necessary

• Difficult implementation

• Similar to many 172 projects with bit swapping

Bringing it
Together:

Identical Keys
•Many inputs of same key into many levels of recursion

• Turn such inputs into “easy” instances by introducing separate buckets for elements
identical to pivots

• Keys occurring more then n k times are likely to become pivots

• Single addition comparison to find whether element goes to equality bucket

Making S3 in place
•Mark beginning of each bucket by
storing largest element in first entry

• Find next larger element signals end of
bucket

• log time with exponential/binary
search

Other Details
• Coarsening recursion with insertion sort for
small input

• Adaptive number of buckets for lower levels
so don’t have many buckets of few elements

• Tuning parameters:
• ! = 256 buckets
• & = 0.2 log(-) oversampling
• / = 1 overpartitioning
• -1 = 16 base case-switch to insertion
• 2 = 2KiB block size

IPS4o Analysis
• Assuming: b = #(%&) (buffer block size)

•(= Ω(*%&)
• Base Case size: +, = - (
• + = Ω(max k, t t4B)
• I/O-complexity: - 6

78 log<
6
6=

(with high
probability)

• Additional Space: -(*>% + log< 6
6=
)

• Usually first term dominates, need to
remove log + term for in-place

• Variables:

• t: number of threads

•M: private cache size of thread

• B: block size for main memory access

Results
• Sequential: IS4o is faster by a factor
of about 1.2

• Parallel: faster by factor 2.5 on
almost all algorithms

• On inputs of 210 to 232

More Results

• Can lag behind other algorithms
on smaller inputs

• Beats competition on large inputs

Multi-Core Results

Further Work/Questions
• Possibility of reducing the amount of code

• Reducing time for sequentially sorting large objects

• Fine Tuning parameters

• Adoption into a language?
§ Java has dual-pivot quicksort
§ C++ uses multi-way merge for parallel

• Viable alternate to Quicksort (over 50 years old)?

