PARADIS: AN EFFICIENT PARALLEL
ALGORITHM FOR IN-PLACE RADIX SORT

M. Cho, D. Brand, R. Bordawekar, U. Finkler, V. Kulandaisamy, and R. Puri

Presented by: Helen He

Motivation

m Distribution based sorts achieve O(N)
m In-memory sorting due to I/0 bounds on disk

m |n-place sorting highly desirable
- Large in-memory databases
- Fewer cache misses

m Parallelizing in-place radix sort has been difficult due to read-write dependencies

MSD Radix Sort

Algorithm 1 Radix Sort

1: procedure RadixSort(d[N],l)
;: = b 41 g y g ket ¢ “wro
2 b=b5b > Function giving bucket at level [
3: B :[l]ho range of b()
. . 4: ent|Bl =0 > Histogram of bucket sizes
Build a histogram of 5 forne N do
radix key distribution 6: cnt[b(d[n])]++
7 end for
]] 8: for i € B do
Set pointers for input 9: ghi =Y, _, entlj]
: i ; 10: gti = Z,. ;entlj)
array distribution 1. end for 2IS
12: for i € B do
Check elements and 13: while gh; < gt; do > Till bucket i is empty
. 14: v = d[gh;]
permute them if 15: while b(v)! = i do
Currenﬂy Occupying :(: (;u'ulp.(lr.(I[yh,,(,.)++])
7: end while
wrong bucket 8. d[ghi++] = v
19: end while
20: end for
] 21: if |l <L —1then > Recurse on each bucket
Recurse into 22: for i € B do
23: RadixSort(d[M;],l+1)
subproblems for next v end for
digits 25: end if
26: end procedure

Speculative Permutation

m Need to partition work among P processors

m Ensuring the partitions are exact is difficult and expensive

m | mm W

-~

N ~
o M g2 M b M T M
gh gh gh
g gn g2 g
ph'y pt', ph', pr’.
stripe full
first fail
~ -~ ~
- - -
, M, 16 M, 0 M M; I
gno gh gh2 gh3
g g g2 g3

m Aim to minimize the wrong bucket sizing and evenly split work among processors

m Each bucket splitinto |P| “stripes” -> each processor owns a stripe of each bucket

Speculative Permutation

ph, ph', ph', ph',
pt!, pt’, pt', pt',
H H i i Algorithm 3 PARADIS Permute
’ . . R R 1: procedure PARADIS Permute(p)
o M o M R I N 2: forie Bdo
gro g g1 £8 3: head = ph{',-)
4 while head < pt? do
_] 5: v = d[head)| > Keep moving v

Serial radix sort 6: > = b(v) > to its bucket k

permutation 7: while k! = i and ph} < pt? do
8: swap(v,d[ph++]) > v into its bucket k
9: k = b(v) > New v and k
10: end while

Move head 11: if £k ==1then p Found a correct element

pOInter Only If a 12: (1[}1,(3(1,(1"""] — (1[[)})‘?]
13: d[phf++] = v

correct element 14: else

was found 15: d(head++] = v
16: end if
17: end while

18: end for
19: end procedure

Repair

m Partition the existing set of buckets B into disjoint subsets B, c B, one for each
processor p € P

ph', ph?, ph, ph?, plé, ph’, ph's ph?,
pt!, 20 pt', pr, pt’, Pt PP, p, i,
i I i i i it A N
i i i i --:[I:I:.:'i | | |
< > > Se—,
28 70 i ;
gho po ghi 2 gh2 p2 gh3 P:
gn gt g2 g3

(a) Almost permuted by PARADIS Permute : B is partitioned By = {0}, By = {1}, B> = {2}, B3 = {3}

2

gho gn ght gt gh2 g gh3 g3

(b) Wrong elements moved to the end of buckets by PARADIS_Repair : gh(1,23} adjusted to the first wrong elements

m After repair we have a subproblem which we again run Permute and Repair on -
opportunity for coarsening?

Load Balancing

m |[f there is a bucket which has way more elements than other buckets, this bucket
will become the performance bottleneck

m PARADIS assigns each bucket i to a non-empty subset P; c P. For any two buckets i
and j, either P,=P;, or P,N P, = .
— Multiple processors can work on the same group of buckets, unlike Repair

min: max{W(p) | Vp} Pl = |P] Ci - log|5/C
where: W(p) = Z Ci - logis| C: | ZJ'GB CJ ' l()ngICJ
| P S
i€Bp Estimation of P,

— Assign processors based on rounded | P;|

Complexity Analysis

Lemma 1
m Letr; be the ratio of wrong elements in bucket i over |N|
m LetE, be the set of processors with an “empty” stripe for bucket i

m Lete; be the ratio of E; over all processors

_Ci—Cil)) _ G
A —

Ty

m ¢,C <C{i), because eC; represents the number of elements permuted into bucket i
by processors in E;

Lemma 2: ri < eif |N‘|) Vi

m Consider any other bucket j. In bucket i, any stripe p not in E; still has the capacity to
receive elements

m Any of these stripes p must have successfully permuted from bucket j any elements
d[n] which satisfy b(d[n]) =i and are in a stripe of the same processor (n € MP))

m Therefore in bucket j, any element still belonging to i must be in a stripe p € E,

=% Ci(0) (1) and Ci+Y,,,C; =N
Z C7 (i) G- Cil) X, 050)

2G5 e _

’ E: W Y
2

E;

Zj;éz' C; o C;
=l = ap)

IN

j:ei’(< e;

- V]

G _
1P|

Bound on Ratio of Incorrect Keys

m Combining Lemmas 1 and 2, r; is the min of both lemmas in the form “min(x, y) - xy”
which is minimized atx =y =.25

C; C
ri < min(—— |/\f| €i),eil N) (14)
C; C 1
= min Ci—s < — 15
(|N| €i) — N S (15)

Corollary 1
Ci \2 .
I—E 7<E |N| g |N|) (16)

which will be maximal with ('; = l—l.‘v’zv. Thus
| B’

|
r<l— — (17)
B

m Let wbe the maximum fraction of wrong elements to be repaired, or
maX{ZiEBp i | v p}

Theorem 2: T(N) S O(|N|<ﬁ + ’LU)) jz —4— 16GB:random
PRrROOF. Without loss of generality, we let r and w repre- 16 o e e 7
sent their maxima over all iterations. Then 14— 3 32GB:skewed /
N N] 8
TN) < ({57 =1 () + ... (18 < skewe
(N)_(m+wW|)+7“(|P|+’wIN|)+7“()+ (18) . Q/Q\\ — P
— ¢ |V V| 1 6 o
=Y (5 FwlN)) = (57 +wN]) (19) 4
1P| |P| 1—7r
t=0 2
By Corollary 1, -+ < |B| which is constant. Hence "y sk w4 m
Number of threads
T(N) < O(’./\/’|(L -+ w)) (20) Figure 8: w values from numeric benchmarks

P

T'(N') converges to O(|j7\>/|), as w goes to 0

ph', pi, i,
P, ', P, pt',
N/4 N/4 N/4 N/4
gh
gn e
(a) the worst case for PARADIS in the 1st iteration
pr',
pie, P, ph,
pt°, pr', P, pt',
| |
nva | N4 Na | Na
. Iz o 1z >
g gn
(b) the worst case for repairing with ryp 1} = w = ll
pi, pi, pit, ph',
pll". pt', e, pt',
N/4 Nj4 N/4 NM
gho gn ghn gn

(c) the ideal case for PARADIS in the 2nd iteration

Figure 9: A pathological case for PARADIS

Performance

Elapsed time (s)

1000

100

10

b~ mptl
—&— omptl
~&— mestl
~&— thb
=~ radix-ax
~i- radix-se

~@- PARADIS

1 2 4 8 16 32
Number of threads

(¢) Numeric random 64GB

Elapsed time (s)

1000

100 |—4— omptl
—A— mestl
~&— thb

-~ radix-ax
~i- radix-se
~©— radix-ip
~@- PARADIS

10
1 2 4 8 16 32

Number of threads

(d) Numeric skewed (zipf 0.75) 64GB

100

°
E
= 10
3
B ~o—mptl \'ﬁ:a
= —4—omptl
—A—mestl
—4&—tbb
~&—radix-ip
-8-PARADIS
1 L 1 1 1 1 J
1 2 4 S 16 32

Number of threads

(h) Retail sales transaction (280M records)

Final Notes

m First parallel in-place radix sort algorithm

m Eventually outperformed by a hybrid radix sort on GPUs which worked around the
memory bandwidth limitation

