
PARADIS: AN EFFICIENT PARALLEL
ALGORITHM FOR IN-PLACE RADIX SORT

M. Cho, D. Brand, R. Bordawekar, U. Finkler, V. Kulandaisamy, and R. Puri

Presented by: Helen He

Motivation

■ Distribution based sorts achieve O(N)

■ In-memory sorting due to I/O bounds on disk

■ In-place sorting highly desirable
– Large in-memory databases
– Fewer cache misses

■ Parallelizing in-place radix sort has been difficult due to read-write dependencies

MSD Radix Sort

Build a histogram of
radix key distribution

Set pointers for input
array distribution

Check elements and
permute them if
currently occupying
wrong bucket

Recurse into
subproblems for next
digits

Speculative Permutation
■ Need to partition work among P processors

■ Ensuring the partitions are exact is difficult and expensive

■ Aim to minimize the wrong bucket sizing and evenly split work among processors

■ Each bucket split into |P| “stripes” -> each processor owns a stripe of each bucket

Speculative Permutation

Serial radix sort
permutation

Move head
pointer only if a
correct element
was found

Repair

■ Partition the existing set of buckets B into disjoint subsets Bp ⊂ B, one for each
processor p ∈ P

■ After repair we have a subproblem which we again run Permute and Repair on –
opportunity for coarsening?

Load Balancing

■ If there is a bucket which has way more elements than other buckets, this bucket
will become the performance bottleneck

■ PARADIS assigns each bucket i to a non-empty subset Pi ⊂ P. For any two buckets i
and j, either Pi = Pj , or Pi ∩ Pj = ∅.

– Multiple processors can work on the same group of buckets, unlike Repair

– Assign processors based on rounded |Pi|

Estimation of Pi

Complexity Analysis

Lemma 1
■ Let ri be the ratio of wrong elements in bucket i over |N|
■ Let Ei be the set of processors with an “empty” stripe for bucket i
■ Let ei be the ratio of Ei over all processors

■ eiCi ≤ Ci(i), because eiCi represents the number of elements permuted into bucket i
by processors in Ei

Lemma 2:

■ Consider any other bucket j. In bucket i, any stripe p not in Ei still has the capacity to
receive elements

■ Any of these stripes p must have successfully permuted from bucket j any elements
d[n] which satisfy b(d[n]) = i and are in a stripe of the same processor (n ∈ Mp

j)

■ Therefore in bucket j, any element still belonging to i must be in a stripe p ∈ Ei

Bound on Ratio of Incorrect Keys

■ Combining Lemmas 1 and 2, ri is the min of both lemmas in the form “min(x, y) – xy”
which is minimized at x = y = .25

Corollary 1

■ Let w be the maximum fraction of wrong elements to be repaired, or
max{ ∑i ∈ Bp ri | ∀ p }

Performance

Final Notes

■ First parallel in-place radix sort algorithm

■ Eventually outperformed by a hybrid radix sort on GPUs which worked around the
memory bandwidth limitation

