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Cache Complexity Model
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Cache Oblivious Model [Frigo et al. ‘99]
3

Cache

Main Memory

CPU

Size M

• Algorithm works well regardless of 

cache parameters

• Works well on multi-level hierarchies

• Simplifies algorithm design and 

implementation due to not having to 

tune for specific machine 

parameters

• Implementations are portable across 

different machines

Block size B

L3 Cache Size M3

L2 Cache Size M2

Block size B3

Block size B2

L1 Cache Size M1

Block size B1

CPU



Parallel Cache Oblivious Model
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• Parallel Cache Oblivious Model for hierarchies of shared 
and private caches [Blelloch et al. ‘11]

• Parallel programs are often memory bound

• Even harder to manually tune algorithms for parameters 
of parallel machines

• Existing parallel cache bounds:
• Qp(n; M, B) < Q(n; M, B) + O(pMD/B)

for private caches using 
work-stealing scheduler

• Qp(n; M+pDB, B) < Q(n; M, B) for
shared cache using parallel
depth-first (PDF) scheduler

• Recipe for parallel
cache-oblivious algorithms:
• Design low-depth algorithms with low sequential cache complexity



Algorithms
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Primitive Work Depth Cache Complexity

Scan/filter/merge O(n) O(log n) O(n/B)

Sort O(n log n) O(log2 n) O((n/B)log(M/B)(n/B))

Matrix Transpose O(nm) O(log(n+m)) O(nm/B)

SpMV (nε-separator) O(m) O(log2 n) O(m/B+n/M1-ε)

Many graph algorithms O(Wsortpolylog(m)) O(Dsortpolylog(m)) O(Qsortpolylog(m))



Merge and Mergesort
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• Input: arrays A and B where |A|+|B|=n
• For k∈[1,…,n1/3] pick pivots such that ak+bk=kn2/3 and A[ak] 

≤ B[bk+1] and B[bk] ≤ A[ak+1] using dual binary search*
• Recursively merge each of the n1/3 subproblems created 

by the pivots until reaching base case
• W(n) = n1/3W(n2/3)+O(n1/3log n) = O(n)
• D(n) = D(n2/3)+O(log n) = O(log n)
• Q(n; M, B) ≤ O(n1/3 (log(n/B)+Q(n2/3; M, B))) if n > cM

≤ O(n/B) otherwise (base case)
• This solves to Q(n; M, B) = O(n/B)
• Plug this in to obtain cache-oblivious mergesort with 

O(log2n) depth and O((n/B) log2(n/M)) cache misses, 
which is sub-optimal
* http://blog.jzhanson.com/blog/practice/code/2018/01/08/algos-1.html

http://blog.jzhanson.com/blog/practice/code/2018/01/08/algos-1.html


Deterministic Samplesort
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1. Divide input into √n subarrays of size √n and sort them 
recursively

2. Choose every (log n)-th element from each subarray as 
a sample and sort the O(n/log n) samples using 
mergesort

3. Pick √n evenly spaced keys from sorted samples to 
determine bucket boundaries and split subarrays 
according to bucket boundaries

4. Use prefix sums and matrix transpose to determine 
offsets into buckets

5. Move keys into buckets using B-TRANSPOSE
6. Recursively sort each bucket



Deterministic Samplesort
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1. Divide input into √n subarrays of size √n and sort them 
recursively

2. Choose every (log n)-th element from each subarray as 
a sample and sort the O(n/log n) samples using 
mergesort

3. Pick √n evenly spaced keys from sorted samples to 
determine bucket boundaries and split subarrays 
according to bucket boundaries

4. Use prefix sums and matrix transpose to determine 
offsets into buckets

5. Move keys into buckets using B-TRANSPOSE
6. Recursively sort each bucket

Work and depth: O((n/log n)*log n)=O(n) work, O(log2n) depth, 
Cache complexity: O(((n/log n)/B) log2(n/M)) = O(n/B)



Deterministic Samplesort
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1. Divide input into √n subarrays of size √n and sort them 
recursively

2. Choose every (log n)-th element from each subarray as 
a sample and sort the O(n/log n) samples using 
mergesort

3. Pick √n evenly spaced keys from sorted samples to 
determine bucket boundaries and split subarrays 
according to bucket boundaries

4. Use prefix sums and matrix transpose to determine 
offsets into buckets

5. Move keys into buckets using B-TRANSPOSE
6. Recursively sort each bucket

Split by merging subarray with array of pivots
Work and depth: O(n/B) work and O(log n) depth
Cache complexity: O(n/B)



Deterministic Samplesort
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1. Divide input into √n subarrays of size √n and sort them 
recursively

2. Choose every (log n)-th element from each subarray as 
a sample and sort the O(n/log n) samples using 
mergesort

3. Pick √n evenly spaced keys from sorted samples to 
determine bucket boundaries and split subarrays 
according to bucket boundaries

4. Use prefix sums and matrix transpose to determine 
offsets into buckets

5. Move keys into buckets using B-TRANSPOSE
6. Recursively sort each bucket

Work and depth: O(n/B) work and O(log n) depth
Cache complexity: O(n/B)



B-TRANSPOSE
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• Naïvely moving elements into buckets can incur one 
cache miss per transfer, for a total of O(n)

• B-TRANSPOSE: cache-oblivious divide-and-conquer 
method for transferring keys into the appropriate buckets

• Lemma: B-TRANSPOSE 
takes O(n) work, O(log n) 
depth, and O(n/B) cache 
misses



Deterministic Samplesort
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1. Divide input into √n subarrays of size √n and sort them 
recursively

2. Choose every (log n)-th element from each subarray as 
a sample and sort the O(n/log n) samples using 
mergesort

3. Pick √n evenly spaced keys from sorted samples to 
determine bucket boundaries and split subarrays 
according to bucket boundaries

4. Use prefix sums and matrix transpose to determine 
offsets into buckets

5. Move keys into buckets using B-TRANSPOSE
6. Recursively sort each bucket

Work and depth: O(n/B) work and O(log n) depth
Cache complexity: O(n/B)



Deterministic Samplesort
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1. Divide input into √n subarrays of size √n and sort them 
recursively

2. Choose every (log n)-th element from each subarray as 
a sample and sort the O(n/log n) samples using 
mergesort

3. Pick √n evenly spaced keys from sorted samples to 
determine bucket boundaries and split subarrays 
according to bucket boundaries

4. Use prefix sums and matrix transpose to determine 
offsets into buckets

5. Move keys into buckets using B-TRANSPOSE
6. Recursively sort each bucket

Can show that buckets will have size at most 2√n log n



Deterministic Samplesort
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= O(n log n)

Using the fact that bucket sizes are at most 2√n log n 

+ D(√n) = O(log2n)

= O((n/B)logMn)
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Randomized Samplesort Performance

• 32 cores with hyper-threading
• Cache-oblivious sample sort gets near linear speedup 

and outperforms stlParallelSort by 1.2 to 2.4x


