
Low Depth Cache-Oblivious
Algorithms

Authors: Guy E. Blelloch, Phillip B. Gibbons, and
Harsha Vardhan Simhadri

Presented by Julian Shun
1

Cache Complexity Model
2

Cache

Main Memory

CPU

Unit cost for transferring
line of size B

Free

Main
Memory

Disk

CPU

External Memory Model

Complexity = # cache misses disk accesses

Size M

Cache-aware (external-memory) algorithms: have
knowledge of M and B
Cache-oblivious algorithms: no knowledge of parameters

Size M

Cache Oblivious Model [Frigo et al. ‘99]
3

Cache

Main Memory

CPU

Size M

• Algorithm works well regardless of

cache parameters

• Works well on multi-level hierarchies

• Simplifies algorithm design and

implementation due to not having to

tune for specific machine

parameters

• Implementations are portable across

different machines

Block size B

L3 Cache Size M3

L2 Cache Size M2

Block size B3

Block size B2

L1 Cache Size M1

Block size B1

CPU

Parallel Cache Oblivious Model
4

• Parallel Cache Oblivious Model for hierarchies of shared
and private caches [Blelloch et al. ‘11]

• Parallel programs are often memory bound

• Even harder to manually tune algorithms for parameters
of parallel machines

• Existing parallel cache bounds:
• Qp(n; M, B) < Q(n; M, B) + O(pMD/B)

for private caches using
work-stealing scheduler

• Qp(n; M+pDB, B) < Q(n; M, B) for
shared cache using parallel
depth-first (PDF) scheduler

• Recipe for parallel
cache-oblivious algorithms:
• Design low-depth algorithms with low sequential cache complexity

Algorithms
5

Primitive Work Depth Cache Complexity

Scan/filter/merge O(n) O(log n) O(n/B)

Sort O(n log n) O(log2 n) O((n/B)log(M/B)(n/B))

Matrix Transpose O(nm) O(log(n+m)) O(nm/B)

SpMV (nε-separator) O(m) O(log2 n) O(m/B+n/M1-ε)

Many graph algorithms O(Wsortpolylog(m)) O(Dsortpolylog(m)) O(Qsortpolylog(m))

Merge and Mergesort
6

• Input: arrays A and B where |A|+|B|=n
• For k∈[1,…,n1/3] pick pivots such that ak+bk=kn2/3 and A[ak]

≤ B[bk+1] and B[bk] ≤ A[ak+1] using dual binary search*
• Recursively merge each of the n1/3 subproblems created

by the pivots until reaching base case
• W(n) = n1/3W(n2/3)+O(n1/3log n) = O(n)
• D(n) = D(n2/3)+O(log n) = O(log n)
• Q(n; M, B) ≤ O(n1/3 (log(n/B)+Q(n2/3; M, B))) if n > cM

≤ O(n/B) otherwise (base case)
• This solves to Q(n; M, B) = O(n/B)
• Plug this in to obtain cache-oblivious mergesort with

O(log2n) depth and O((n/B) log2(n/M)) cache misses,
which is sub-optimal
* http://blog.jzhanson.com/blog/practice/code/2018/01/08/algos-1.html

http://blog.jzhanson.com/blog/practice/code/2018/01/08/algos-1.html

Deterministic Samplesort
7

1. Divide input into √n subarrays of size √n and sort them
recursively

2. Choose every (log n)-th element from each subarray as
a sample and sort the O(n/log n) samples using
mergesort

3. Pick √n evenly spaced keys from sorted samples to
determine bucket boundaries and split subarrays
according to bucket boundaries

4. Use prefix sums and matrix transpose to determine
offsets into buckets

5. Move keys into buckets using B-TRANSPOSE
6. Recursively sort each bucket

Deterministic Samplesort
8

1. Divide input into √n subarrays of size √n and sort them
recursively

2. Choose every (log n)-th element from each subarray as
a sample and sort the O(n/log n) samples using
mergesort

3. Pick √n evenly spaced keys from sorted samples to
determine bucket boundaries and split subarrays
according to bucket boundaries

4. Use prefix sums and matrix transpose to determine
offsets into buckets

5. Move keys into buckets using B-TRANSPOSE
6. Recursively sort each bucket

Work and depth: O((n/log n)*log n)=O(n) work, O(log2n) depth,
Cache complexity: O(((n/log n)/B) log2(n/M)) = O(n/B)

Deterministic Samplesort
9

1. Divide input into √n subarrays of size √n and sort them
recursively

2. Choose every (log n)-th element from each subarray as
a sample and sort the O(n/log n) samples using
mergesort

3. Pick √n evenly spaced keys from sorted samples to
determine bucket boundaries and split subarrays
according to bucket boundaries

4. Use prefix sums and matrix transpose to determine
offsets into buckets

5. Move keys into buckets using B-TRANSPOSE
6. Recursively sort each bucket

Split by merging subarray with array of pivots
Work and depth: O(n/B) work and O(log n) depth
Cache complexity: O(n/B)

Deterministic Samplesort
10

1. Divide input into √n subarrays of size √n and sort them
recursively

2. Choose every (log n)-th element from each subarray as
a sample and sort the O(n/log n) samples using
mergesort

3. Pick √n evenly spaced keys from sorted samples to
determine bucket boundaries and split subarrays
according to bucket boundaries

4. Use prefix sums and matrix transpose to determine
offsets into buckets

5. Move keys into buckets using B-TRANSPOSE
6. Recursively sort each bucket

Work and depth: O(n/B) work and O(log n) depth
Cache complexity: O(n/B)

B-TRANSPOSE
11

• Naïvely moving elements into buckets can incur one
cache miss per transfer, for a total of O(n)

• B-TRANSPOSE: cache-oblivious divide-and-conquer
method for transferring keys into the appropriate buckets

• Lemma: B-TRANSPOSE
takes O(n) work, O(log n)
depth, and O(n/B) cache
misses

Deterministic Samplesort
12

1. Divide input into √n subarrays of size √n and sort them
recursively

2. Choose every (log n)-th element from each subarray as
a sample and sort the O(n/log n) samples using
mergesort

3. Pick √n evenly spaced keys from sorted samples to
determine bucket boundaries and split subarrays
according to bucket boundaries

4. Use prefix sums and matrix transpose to determine
offsets into buckets

5. Move keys into buckets using B-TRANSPOSE
6. Recursively sort each bucket

Work and depth: O(n/B) work and O(log n) depth
Cache complexity: O(n/B)

Deterministic Samplesort
13

1. Divide input into √n subarrays of size √n and sort them
recursively

2. Choose every (log n)-th element from each subarray as
a sample and sort the O(n/log n) samples using
mergesort

3. Pick √n evenly spaced keys from sorted samples to
determine bucket boundaries and split subarrays
according to bucket boundaries

4. Use prefix sums and matrix transpose to determine
offsets into buckets

5. Move keys into buckets using B-TRANSPOSE
6. Recursively sort each bucket

Can show that buckets will have size at most 2√n log n

Deterministic Samplesort
14

= O(n log n)

Using the fact that bucket sizes are at most 2√n log n

+ D(√n) = O(log2n)

= O((n/B)logMn)

16

Randomized Samplesort Performance

• 32 cores with hyper-threading
• Cache-oblivious sample sort gets near linear speedup

and outperforms stlParallelSort by 1.2 to 2.4x

