
Introduction to Pregel
Paper Authored By: Malewicz et al.

By: Shwetark Patel



What is Pregel?

● Framework for processing and modelling algorithms on large graphs
● Examples of large graphs

○ The Web
○ Transportation networks

● Created by Google Researchers



The Problem

● Running algorithms on large graphs is difficult
○ Distribution over machines leads to issues with machines failing 

and locality
○ Algorithms are often complex and take many lines of code to 

write, potentially leading to bugs
○ Current frameworks (such as MapReduce) are ill-suited for graph 

algorithms



Pregel Basics

● Each vertex is assigned a vertex identifier and associated with a 
user-defined value

● Pregel computation is defined by a sequence of “supersteps”
● All computation within a superstep is done in parallel 
● At each superstep, each vertex performs a user-defined function
● Each vertex can see messages sent to it at the previous superstep 

and send messages to other vertices for the next superstep



Pregel Basics 2

● Vertices can change the topology of the graph during each superstep
● All vertices are active at the beginning
● At any superstep, a vertex can vote to halt and then it stops 

computation for all future supersteps (though it can be reactivated 
with a message)

● Computation is finished when all vertices vote to halt
● The output is simply the set of values outputted by each of the 

vertices



C++ API Basics

● Pregel users implement algorithms through the C++ API
● One must create a subclass of the predefined Vertex class
● Compute() -- Executed by each vertex at each superstep

○ GetValue() -- Get the value associated with the vertex
○ MutableValue() -- Modify the value associated with the vertex



Message Passing

● Vertices can pass messages to each other, that can be read at the 
next superstep

● The order that messages will be delivered is not guaranteed; it is only 
guaranteed that they will be sent



Combiners

● Sometimes, not all messages individually are important to a vertex. 
Only the messages in aggregate are important. 
○ For example, perhaps a vertex only needs the sum of all incoming 

message values
● We can make our program more efficient by writing a Combiner that 

combines messages delivered to a vertex
○ We should only write combiners for associative and commutative 

operations (because we can’t assume the ordering of messages 
or how they’re grouped)



Aggregator

● Each vertex provides a value to an aggregator in a superstep, and 
then the aggregator combines all values together using an operator 
and provides the result for the next superstep

● Possible use case: Select a “special” vertex by providing all vertex IDs 
to the aggregator and choosing the maximum one 

● Sticky aggregator: Combine values from all previous supersteps 
rather than just the last one



Topology Mutations

● Multiple vertices can try to change the topology of a graph in a single 
superstep

● Removals are performed before additions, with edge removal before 
vertex removal and vertex addition before edge addition

● Other conflicts are handled with user defined handlers



Pregel Architecture

● Each vertex is assigned to one of many partitions
○ The default assignment function is hash(vertexID) (mod N), where 

N is the number of partitions
● Many copies of the Pregel program are executed on a cluster, with 

one copy acting as the master
● The master is not assigned a partition like each of the workers are -- 

rather, the master just coordinates worker activity



Pregel Architecture 2

● The master determines the number of partitions and assigns 
machines to partitions
○ The user can also control the number of partitions

● The master tells workers when to perform supersteps
● The master can ask workers to save their partitions at the end



Fault Tolerance

● Done through checkpointing
● The master asks workers to save partitions to persistent storage at 

the beginning of supersteps
● Worker failures detected using ping messages
● Partitions from failed workers are reassigned (a few previous 

supersteps may need to be repeated depending on when the worker 
failed)



Worker Implementation

● Worker stores the partition in memory
● Worker stores an incoming message queue and a flag denoting 

whether the vertex is active (in fact, it stores two copies of these: one 
for this time-step and one for the next).

● When sending a message to another vertex, if the vertex is on 
another machine, the message is added to a buffer for delivery

● When the buffer size becomes large enough, it is emptied and all 
messages are sent to the destination vertex



Master Implementation

● The master coordinates the worker’s activities
● The master also maintains various statistics about the graph

○ Size of the graph
○ Number of active vertices
○ Message traffic per superstep



Application: PageRank

● At each superstep, each vertex sends it’s (Current Page Rank) / 
(Number of outgoing edges)

● Each vertex sums up incoming messages and uses a formula to 
determine its new PageRank

● This process is repeated 30 times (though in reality page rank should 
go until convergence)



Application: PageRank



Application: Shortest Paths

● At each superstep, each vertex receives potential minimum distance 
updates from its neighbors (from the previous superstep) and updates 
its value if necessary

● If an update is indeed made, it sends out potential updates to its 
neighbors

● The algorithm terminates when no updates are made



Experiments

● Experiments were run using a Single Source Shortest Path 
implementation in Pregel

● Researchers found that runtime scaled well with an increasing 
number of worker tasks 

● Pregel also produced satisfactory (but not optimal) results given the 
minimal coding effort put in



Experiments



Strengths and Weaknesses

● Strength: Good results with minimal coding effort, fault tolerant, and 
flexible

● Primary weakness: Might be slower than optimized implementations



Future Work

● Potentially scaling the framework to even larger graphs
● Assigning vertices to machines to minimize the number of 

messages sent between different machines



Discussion Questions

● What are some potential attributes of algorithms that would prevent 
Pregel from being efficient in modelling them?

● Compare Pregel to other similar frameworks, such as Ligra


