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Paper Outline
• Presents the new PowerGraph framework for efficient Graph-

Parallel processing.

• Presents a new abstraction for general graph-parallel algorithm 
design

• Focuses on designing a new system that behaves well on natural 
graphs

• Presents several key innovations that achieve better performance 
than existing graph-parallel frameworks, exemplified by Pregel and 
GraphLab



Context: Graph-Parallel 
Processing
• Graph-parallel processing is very important in the age of big data

• The term refers to algorithms that perform computations through 
“vertex-programs” that run on individual vertices and interact by 
sending data over edges.

• Many major machine learning and data mining (MLDM) algorithms, 
such as PageRank, Single-Source Shortest Path, and graph-coloring, 
can be encoded in this paradigm

• Existing frameworks, however, parallelize by using individual 
vertices as the unit of computation, and thus depend on vertices 
having low degrees to achieve good parallelism



Context: Natural Graphs
• Most real-world applications of graph-parallel frameworks are run 

over so-called “natural graphs”

• This term refers to graphs that represent data from the real world, 
such as social networks or the Internet

• However, these graphs have been shown to follow a power-law 
degree distribution, which implies that a small subset of the vertices 
have very high degrees

• This innate imbalance in natural graphs poses an issue for existing 
graph-parallel frameworks, which factor computation over vertices 
and thus depend on degree distribution for performance

• As 𝛼 gets larger, the skewedness grows.



GAS Model
• The paper introduces a characterization of the general graph-parallel 

problem

• The inputs are a sparse graph {V, E} and a vertex-program Q(v), 
which can be executed in parallel on the vertices and can interact 
with adjacent vertices.

• Gather – information from adjacent vertices/edges is reduced by a 
generalized sum (commutative and associative).



GAS Model
• Apply – the gathered sum is used with the current value to update 

the current vertex value

• Scatter – the new value is used to update data on adjacent edges



Pregel
• Bulk-Synchronous execution – all vertex-programs run simultaneously 

in lock step – within each “super-step,” each Q(v) receives messages from 
the previous step and sends to the next step. It terminates when there 
are no remaining messages and all programs vote to stop.

• Combiners – Associative and Commutative functions that merge 
incoming messages from neighboring vertices (no edge data).

• Gather = combiners, Apply/Scatter = vertex-program



GraphLab
• Asynchronous Distributed Shared-Memory Execution – all vertex 

programs access a distributed graph with the current data, each can 
access the adjacent vertices and edges. Vertex-programs schedule their 
neighbors to run in the future (serializability by preventing neighboring 
instances from running simultaneously).

• There is no messaging – vertices directly access the data they need.

• Gather/Apply = vertex-program, Scatter = direct access (changes are 
immediately visible to neighbors)

• GraphLab provides strong serializability (every parallel execution 
corresponds to a sequential execution) but does this through a 
sequential locking protocal that is unfair to high-degree vertices



Edge-Cuts
• The existing method to partition the graph – vertices are evenly 

assigned to machines such that the number of “cut edges” (edges 
spanning machines) is minimized.

• If adjacent vertices A, B are on distinct machines 1, 2, then they use 
“ghost” vertices (e.g. machine 1 has a ghost vertex B, and machine 2 
has a ghost vertex A) – changes have to be synchronized to ghosts.

• Balanced edge-cut algorithms perform poorly on power-law graphs, 
so GraphLab and Pregel both use randomized placement – this is 
bad.



Randomized Edge-Cuts

• So, the communication costs are nearly linear in |E| (to synchronize 
across ghosts).



Challenges of Natural Graphs
• The key issue is that a small number of vertices have a large number 

of the edges (e.g. 1% of vertices in Twitter graph have ~50% of edges)

• Work Balance: Existing graph-parallel frameworks treat vertices 
symmetrically and have storage/communication/computation costs 
linear in degree

• Partitioning: GraphLab and Pregel both depend on partitioning the 
graph – this is hard to do in natural graphs, so they both end up 
using random partitioning, which is bad (seen later)

• Communication/Storage: Because of the skewed distribution, there 
are major bottlenecks in communication and heavy memory usage at 
high-degree vertices

• Computation: Existing frameworks do not parallelize individual 
vertex-programs, limiting their scalability in skewed graphs



Vertex-Cuts
• The intuition here is that we can either cut the vertices or the edges 

to partition the graph. The distribution of vertex degree is highly 
skewed, but the distribution of number of vertices adjacent to a given 
edge is constant (e.g. it’s always 2). Thus, cutting vertices has much 
better potential.

• In the vertex-cut, every edge is assigned to an individual machine, 
and the vertices are cut across machines.

• Each vertex is replicated across the machines where its adjacent 
edges lie – the communication overhead is the total sum of the 
number of vertex replicas. Replicas are referred to as mirrors.



Vertex-Cuts
• The formal objective is to minimize communication costs by 

minimizing the total vertex replication.



Randomized Vertex-Cuts



Randomized Vertex-Cuts
• The randomized vertex-cut achieves very good expected performance, 

getting almost perfect balance across the machines.

• Lower 𝛼 causes higher replication factors, but also gives higher 
effective gains compared to a random edge-cut (in practice).



Greedy Vertex-Cuts



Greedy Vertex-Cuts
• The optimally greedy solution has a high overhead to communicate 

and coordinate between machines, so there are two different 
implementations: a coordinated implementation that uses a shared 
table to maintain A values, and an oblivious implementation that 
runs independently on each machine and estimates neighboring A 
values.

• In general, the oblivious implementation provides a good tradeoff 
between the cost of calculating the vertex-cut and the replication 
benefits provided by the resulting partition.



Vertex-Cut Comparisons



PowerGraph: General Idea
• Combines aspects of Pregel and GraphLab but uses vertex-cuts to 

partition the graph.

• From Pregel, it takes the commutative/associative gather, which 
allows for gathering to be done by the framework rather than the 
vertex-program. It also takes the bulk-synchronous execution model.

• From GraphLab it takes the shared-memory data-graph, so that the 
framework can handle communication. It also takes the 
asynchronous computation model.

• The framework introduces a stateless vertex-program through a 
GASVertexProgram interface. The gather, sum, apply, and scatter 
are explicitly separated, and the communication is all handled by the 
framework, rather than the vertex-program.



PowerGraph: Abstraction
• Gather, Sum act as a map-reduce processor on the adjacent data.

• Apply is done on the sum and current vertex’s value and atomically writes back to the 
data-graph. In order for the framework to be effective, the work should be sublinear 
(ideally constant) in the degree of the node.

• Scatter is invoked in parallel and produces both an edge value and delta value 
(explained later).



PowerGraph: Examples



PowerGraph: Vertex-Cuts



PowerGraph: Delta Caching
• For further optimization, the framework provides delta caching

• Many times, only a few of the vertex-program’s neighbors have 
changed from the previous run. Thus, the accumulator values are 
cached at each vertex, and the scatter function can return a delta 
value to directly apply to the neighboring cached accumulator. If this 
value is not returned, the neighboring cache is cleared.



PowerGraph: Execution Model
• PowerGraph provides three modes of computation: bulk-

synchronous, asynchronous, and serializable asynchronous.

• The bulk-synchronous model splits the execution into gather, apply, 
and scatter phases (“minor-steps”). Each of these minor-steps are run 
synchronously on all active vertices in lock-step, and changes are 
committed at the end of each minor-step (and visible on the next). 
Activated vertices are added to the next super-step (a full GAS 
series).

• In asynchronous execution, changes are immediately visible to other 
vertices and vertices are run as soon as resources are available. This 
is inherently non-deterministic, so PowerGraph provides a strong 
serializability guarantee by using parallel locking that is fair to high-
degree vertices.



Comparisons
• Both Pregel and GraphLab can be simulated in PowerGraph by 

writing the appropriate vertex-programs. However, this obviates the 
benefits of PowerGraph.

• PowerGraph’s great strength is when the apply function is sub-linear 
in the degree of the vertex. Then, the gather and scatter steps are 
executed in parallel across all the edges (on different machines), and 
the actual vertex computation is done very quickly on a single 
master vertex.

• PowerGraph has very well-balanced computation and communication 
costs as well as runtime because of the vertex-cut properties.



Comparisons



Comparisons
• The three frameworks were compared by running PageRank over synthetic 

power-law graphs. For each value of 𝛼, the graphs were generated using the 
power-law for out-degree (fan-out) and maintaining roughly equal in-degrees 
and then by inverting these to get power-law in-degree (fan-in) graphs.

• For computation, the Pregel implementation is linear in out-degree and the 
GraphLab implementation is linear in in-degree. On the other hand, 
PowerGraph has no degree dependence in runtime because the 
gather/scatter are spread across machines.



Comparisons
• For communication, both GraphLab (fan-in gather) and Pregel (fan-

out scatter) have costs proportional to the number of ghosts – the 
data must be sent across any edges that span machines. On the other 
hand, PowerGraph communication is proportional to the number of 
mirrors, which we showed is smaller in expectation.

• Pregel sends messages on fan-out edges, but GraphLab is symmetric 
to fan-in and fan-out edges.



Comparisons
• In overall runtime, the pattern basically follows the shapes we saw 

in the communication imbalance graphs, because PageRank is 
computationally simple so the runtime is dominated by messaging.

• Greedy partitioning yields even better performance for PowerGraph.



Results
• Run with HDFS providing the backing data store. Each node reads a 

unique set of data files and loaded into position in parallel with the 
partitioning algorithm

• The general experiment is PageRank on Twitter with oblivious 
partitioning (unless otherwise specified).

• Runtime scaled linearly with replication.



Synchronous Results
• For any reasonably large job, coordinated partitioning gave great 

runtime benefits

• Delta caching reduced runtime by 45%

• Nearly optimal (linear) weak scaling – job size per processor remains 
constant as processors are added.



Asynchronous Results
• In regular asynchronous mode (Async), avoid data races by ensuring 

exclusive access to arguments.

• When in serializable mode (Async + S), ensure serializability by 
preventing adjacent programs from running simultaneously.
 They use the Chandy-Misra solution to dining philosophers to accomplish this 

because it is more parallel than other solutions (acquire locks simultaneously)

• In Async, with caching disabled, throughput increases with time because 
the computation becomes focused on high-degree nodes.

• Async has essentially linear weak scaling while Async+S does not 
(because the contention grows super-linearly with problem size).

• Serializability shows its value in the graph-coloring problem, where 
Async spends 34% of the runtime coloring the final 1% of edges 
(contested) while Async colors the full graph with half the work.



Asynchronous Results



Asynchronous Results
• Alternating Least Squares (ALS) workload – ML algorithm, complexity 

determined by parameter d (𝑂 𝑑3 ).

• Note that Async+S has lower throughput but converges faster –
serializability is often required for convergence

• The difference in throughput decreases as d increases (runtime shifts from 
communication to computation).



Results
• Fault tolerance through snapshotting.

• Some other comparisons against real 
systems. Note that Smola et al.’s LDA 
solution is very complicated, special-
purpose code to solve that exact problem, 
and it achieves similar performance to 
PowerGraph with ~200 lines of user code.



Related Work
• There are many existing graph-parallel frameworks, and their main 

properties are represented throughout the presentation by Pregel 
and GraphLab.

• Some others are BPGL (similar to Pregel), Kineograph (somewhat 
similar to GraphLab and Pregel)

• Vertex-cut is similar to hypergraph partitioning (edge->vertex, 
vertex->hyper edge).

• The streaming (greedy) vertex cut is a novel innovation, but there 
are existing streaming edge-cut algorithms (Stanton et al).

• GraphChi is an efficient single-machine implementation of the 
GraphLab abstraction that could be used in conjunction with 
PowerGraph to provide “out-of-core storage.”



Thoughts
• Strengths

 This paper has many novel ideas, especially the vertex-cut and its efficient 
computation, and leverages them to build a power framework

 It also nearly abstracts the general problem and the framework to 
demonstrate its applicability to various classes of problems

 It manages to parallelize operations with relatively low synchronization 
overhead, allowing for high scalability.

 It outperforms state-of-the-art graph-parallel frameworks

• Weaknesses

 This paper presented the ideas in an odd order that made it harder to 
understand in a single pass. In particular, the vertex-cut idea should be 
presented before the PowerGraph abstraction.

 The paper sometimes focuses more on comparisons than on the idea itself.



Discussion
• What are the key ideas that are presented in this paper and how 

could they be applicable beyond graph-parallel frameworks?

• Why do you think the other frameworks were developed without 
explicit attention towards natural graphs?

• For vertex cuts, does the edge imbalance across machines matter 
more or less than the replication factor?

• Would it be beneficial to consider the balance of edges for each vertex 
across machines (i.e. to ensure equitable distribution of work for 
every individual vertex)?


