
Scalability! But at what COST?

Frank McSherry, Michael Isard, and Derek Murray

Presentation BY: Abdullah Alomar



Introduction



Motivation

“You can have a second computer once you’ve shown you know how
to use the first one.”

— Paul Barham

The authors observe that many published works on big data systems
are evaluated in terms of their scalability.

Only few directly compare their performance in terms of absolute
performance (compute time) against reasonable benchmarks.

The problem is that scalability is a rather misleading metric; any
system can scale arbitrarily well when it is not implemented well .

1



Example of misleading scalability

The problem is that scalability is a rather misleading metric; any
system can scale arbitrarily well when it is not implemented well .

Figure 1: Scaling and performance measurements for a data-parallel
algorithm, before (system A) and aǒter (system B) a simple performance
optimization.

2



A New Metric

Motivated by this, the authors present a new metric for big data
platforms called COST (Configuration that Outperforms a Single
Thread).

Specifically, the COST of a given platform is the hardware
configuration (Number of cores) required to outperforms a
competent single-threaded implementation. Example:

Figure 2: Naiad UF has a COST of 10 cores, while the slow implementation
has a COST of roughly 100 cores.

3



Comparison With Single Threaded
Programs



Single Threaded programs

To get their point across, the author’s compare a single-threaded
program with several scalable graph processing platforms.

Specifically, they carry out two tasks:

1. PageRank
2. Connected Components

on two large graphs: a Twitter graph and the web graph “uk-2007-05”.

4



Page Rank Comparison

5



Connected Components Comparison

6



Using A better baseline

The authors also compare with a more efficient single-threaded
implementations. They find that these simple optimizations yields a
performance that surpass the performance of the systems
considered by an additional order of magnitude.

1. PageRank: Improving graph layout

7



Using A better baseline

2. Connected Components: Use Union-Find instead of label
propagation.
The label propagation algorithm is used for graph connectivity because it fits within
the “think like a vertex” computational model. This algorithm scales well due to the
algorithm’s sub-optimality; as it does more work than better algorithms.

8



COST of Prior Systems



COST of several platforms

These curves which shows the run time of PageRank for the twitter
graph. From these two curves we can say:

• Naiad has a COST of 16 cores.
• GraphLab has a COST of 512 cores (Not shown in figure).
• GraphX does not intersect the corresponding single-threaded
measurement, and thus has unbounded COST.

Figure 5: Published scaling measurements for PageRank on twitter graph. The first
plot is the time per warm iteration. The second plot is the time for ten iterations from
a cold start. Horizontal lines are single threaded measurements.

9



Conclusions and Discussion



Conclusions and Discussion

• Several aspects of scalable systems design contribute to
overheads and increased the absolute running time:
1. The computational model might restricts the programs one may
express (e.g. vertex-centric model only allow for a limited subset
of efficient graph algorithms).

2. The implementation of the system may add overheads a single
thread doesn’t require.

• Given these reasons, more care should be exercised when
evaluating a scalable system. The COST of a system, for
example, can yield good insight about the systems
performance.

10



Discussion:

1. Has this paper triggered any changes in how these large-scale
systems are evaluated? If not, how do you think this problem
should be tackled?

2. How did we get here? Why has the focus shiǒted to answering
the question “Can systems be made to scale well?” (which is as
this paper shows is trivially answered by designing less efficient
implementations).

11



Thank You

11


	Introduction
	Comparison With Single Threaded Programs
	COST of Prior Systems
	Conclusions and Discussion

