GraphChi: Large-Scale Graph
Computation on Just a PC

By: Aapo Kyrola (Carnegie Mellon University), Guy Blelloch (Carnegie
Mellon University), Carlos Guestrin (University of Washington)

Presentation by: Jessica Zhu

Motivations

e Real-world graphs are huge
 Computation on these graphs is very expensive and time-consuming
* Distributed graph algorithms are hard to understand

Contributions

* Parallel Sliding Windows (PSW)
* Small number of non-sequential accesses to disk
* Implements asynchronous model of computation
* Processes large graphs from disk with theoretical guarantees

* GraphChi
e Design, evaluation, and implementation in C++
* Able to solve problems previously only solvable on cluster computing

Disk-Based Graph Computation

* Existing models are vertex-centric

Algorithm 1: Typical vertex update-function

1 Update(vertex) begin

2 x[] <« read values of in- and out-edges of vertex ;
3 vertex.value «— f(x[]) ;

4 foreach edge of vertex do

5 edge.value < g(vertex.value, edge.value);

6 end

7 end

Disk-Based Graph Computation

* Existing models use the Bulk-Synchronous Parallel (BSP) model
* Update functions use values from previous iteration
* Simple to implement, allows maximum parallelization
* Synchronization steps (after each iteration) are expensive

* Asynchronous model
* Update functions use most recent values of edges and vertices
* Ordering of updates is dynamic
e Converges in situations where BSP does not

Disk-Based Graph Computation

* Compressed Sparse Row and Compressed Sparse Column storage

* Modifying the value of a vertex
* New value must be read from set of out-edges (random read) OR
 New value is written to in-edge list (random write)

e Possible Solutions

* SSD as a memory extension: can’t handle accessing millions of edges per
second

» Exploiting locality: unpredictable, depends highly on structure of graph
* Graph compression: doesn’t work if data is stored with the nodes and edges

Parallel Sliding Windows (PSW)

* Loads subgraph from disk
e Updates vertices and edges
* Writes updated values to disk

PSW: Loading subgraph from disk

Vertices V are split into P disjoint intervals

Each interval has a shard that stores all edges going into the interval
Edges are stored in order of their source

Intervals balances number of edges in each shard

Does graph computation in execution intervals

First load shard(p) into memory, call it memory-shard

Out-edges are stored in consecutive chunks in the other shards, requiring P-1
block reads

Edges for interval(p+1) are stored immediately after interval(p)

When PSW moves onto the next interval, it slides over window, other shards are
called sliding shards

Window length is variable if degree distribution is not uniform

PSW: Loading subgraph from disk

1 Vy Vo \4

interval(1) | interval(2) -intervaI(P)

shard(1) shard(2) shard(P)

Figure 1: The vertices of graph (V, F) are divided into P
intervals. Each interval 1s associated with a shard, which
stores all edges that have destination vertex in that interval.

PSW: Updating vertices and edges

e Subgraph for interval p has been loaded to disk
 Call update-function for each vertex in parallel

* External determinism prevents race conditions (accessing edges
concurrently), guarantees each run of PSW produces same result

* To implement: vertices with end-points of edges in the same interval are
marked as critical and executed sequentially (in line with the asynchronous
model)

PSW: Updating vertices and edges

Interval 1 Interval 2 Interval 3 Interval 4

I | —
_l L ._l_.L_Jl

Shard1 Shard2 Shard 3 Shard 4 Shard1 Shard2 Shard 3 Shard 4 Shard1 Shard2 Shard 3 Shard 4 Shard1 Shard 2 Shard 3 Shard 4

Figure 2: Visualization of the stages of one iteration of the Parallel Sliding Windows method. In this example, vertices
are divided into four intervals, each associated with a shard. The computation proceeds by constructing a subgraph of
vertices one interval a time. In-edges for the vertices are read from the memory-shard (in dark color) while out-edges
are read from each of the sliding shards. The current sliding window is pictured on top of each shard.

PSW: Updating vertices and edges

Algorithm 2: Parallel Sliding Windows (PSW)

1 foreach iteration do

2 shards[] «— InitializeShards (P)
3 for interval < 1 to P do
4 /* Load subgraph for interval, using Alg. 3. Note,

that the edge values are stored as pointers to the
loaded file blocks. */

5 subgraph < LoadSubgraph (interval)
6 parallel foreach vertex € subgraph.vertex do
7 /* Execute user-defined update function,
8 which can modify the values of the edges */
9 UDF _updateVertex (vertex)

10 end

11 /* Update memory-shard to disk */

12 shards[interval].UpdateFully()

13 /* Update sliding windows on disk */ for

s€l,.,P, s#interval do

14 shards[s].UpdateLastWindowToDisk()

15 end

16 end

17 end

PSW: Writing updated values to disk

* Edges are loaded from disk in large blocks which are cached in
memory

* Modifications directly modify blocks themselves, PSW overwrites old
data when it updates

 Active sliding window is rewritten to disk
* Number of non-sequential writes for an execution interval is P

Algorithm 3: Function LoadSubGraph(p)

e e
_ W N = O

)
7]

NENNNNHHHH
W W N = O 8 3R

Input : Interval index number p

Result: Subgraph of vertices in the interval p
/* Initialization */

a < interval[p].start

b < interval[p].end

G < InitializeSubgraph (a,b)

/* Load edges in memory-shard. */
edgesM <« shard[p].readFully()
/* Evolving graphs: Add edges from buffers. */
edgesM «— edgesM U shard[p].edgebuffer[1..P]
foreach e € edgesM do
/* Note: edge values are stored as pointers. */
G'.vertex[edge.dest].addInEdge(e.source, &e.val)
if e.source € [a, b] then
G.vertex[edge.source].addOutEdge(e.dest, &e.val)
end

N X R W N -

end

/* Load out-edges in sliding shards. */
forsel,..,P, s# pdo
edgesS « shard[s].readNextWindow(a, b)
/* Evolving graphs: Add edges from shard’s buffer p */
edgesS «— edgesS U shard[s].edgebuffer[p]
foreach e € edgesS do
G.vertex[e.src].addOutEdge(e.dest, &e.val)
end
end
return G

PSW In action

Shard 1 Shard 2 Shard 3 Shard 1 Shard 2 Shard 3
src dst :value| |src dst value| |src dst value src_ dst :value| |src dst value| |src dst value
1 1 : 2 1 1 2
2 0.3 3 0.4 =) 0.6 2 0.273 3 0.364 5 0.545
3 2 3 3 2 3
2 0.2 3 0.3 5 0.9 2 0.22 3 0.273 5 0.9
4 3 6 1.2 4 3 ; 6 1.2
1 1.4 4 0.8 4 1 1.54 4 0.8 4
5 5 5 0.3 5 5 5 0.3
1 0.5 3 02| | s 1 0.55 3 02]|]|s
2 0.6 6 6 1.1 2 0.66 6 6 1.1
6 4 1.9 6 4 1.9
2 0.8 2 0.88

(a) Execution interval (vertices 1-2) (b) Execution interval (c) Execution interval (vertices 3-4) (d) Execution interval
(vertices 1-2) (vertices 3-4)

Figure 3: [Illustration of the operation of the PSW method on a toy graph (See the text for description).

Evolving Graphs

e Support changes in graph structure
* Allow adding edges to graphs
* Allows removal of edges (flag them, delete when shard is rewritten to disk)

* Divide shard into P logical parts: part j contains edges with source in
the interval |
e Edge-buffer(p, j) is in-memory
* When edge is added to graph, add it to corresponding edge-buffer

* When interval is loaded from disk, edges from edge-buffers are added to in-
memory graph

* |If number of edges in edge-buffers exceeds limit, write edges to disk

Evolving Graphs

edge-buffer(j, 1)

interval(1)

edge-buffer(j, 2)

interval(2)

edge-buffer(j, P)

interval(P)

shard(j)

Figure 4: A shard can be split into P logical parts cor-
responding to the vertex intervals. Each part is associated
with an in-memory edge-buffer, which stores the inserted
edges that have not yet been merged into the shard.

/O Complexity

* Cost = number of block transfers from disk to main memory
* B: size of block transfer

» Total data size = |E|, as each edge is stored once

Shards have sizes |E|/P

Each edge is accessed twice (once in each direction)

Each edge is written once or twice (once if both endpoints of edge belong to
same vertex interval)

Often PSW requires P non-sequential disk seeks to load edges from the P-1 sliding
shards for an execution interval

2|E|
I < Qp(F) <

A|E
41£] +@(P2)

GraphChi System Design

e Shard Data Format
* Fast to generate and read
* Adjacency shard stores an edge array for each vertex in order
* Edge shard data is a flat array of edge values in user defined type

GraphChi System Design: Preprocessing

e Sharder

* Counts the in-degree of each vertex, computes prefix sum to divide graph into
equal intervals (one pass)

* Write each edge to a temporary file of the owning shard (one pass)
* Process each temporary file to sort the edges and compress them
 Compute a binary degree file with in and out degree of each vertex

* P is chosen so that the largest shard is at most % size of available
memory (other memory needed to store pointers, buffers, auxiliary
data structures)

S|E| | V]

+
B

e Total cost:

GraphChi Implementation

e Efficient subgraph construction

* Calculates the exact amount of memory needed to store and perform
computation on an execution interval

* Can do this using degreefile, which stores all in and out degrees of each
vertex (using prefix sum, can calculate exactly how many edges they need to
store)

* /O cost: 2[|V|/B]

* Selective scheduling

* Update can flag a neighboring vertex to be updated, typically if edge value
changes significantly

* Can be used to implement incremental computation: when an edge is
created, its source or destination vertex is added to the schedule

GraphChi: Programming Model

* Adjacency shard: stores edge array for each vertex in order
e Edge data shard: flat array of edge values

 Sharder: handles preprocessing, which is I/O efficient and can be
done with limited memory

* Counts the in-degree of each vertex and calculates prefix sum to divide the
graph into P equal intervals (one pass)

* Write each edge to temporary file of owning shard (one pass)
* Process each of these files to sort edges and write in compact format
 Compute binary degreefile (both in and out edges) for every vertex

GraphChi: Execution

e Efficient subgraph construction
* Calculate exact memory needed for an execution interval using degreefile
* Use multithreading to access the vertices needed

e Sub intervals

* Divide execution interval into sub intervals (some intervals may have lots of edges
that don’t fit into memory)

* Allows same shard files to be used with different amounts of memory, 1/O costs not
affected

* Evolving graphs
» Keep track of changing degreefiles, vertex interval sizes

* Selective scheduling
e Updates flag neighboring vertices to also be updated

GraphChi Implementation

Load degree data for " LOAD FROM DISK... \
vertices in interval [a,b]

~~

Preallocate edge
arrays and vertex >
objects.

... in-edges and internal out-
edges from memory shard

Execute vertex
update-functions

... out-edges from P-1 sliding

WRITE TO DISK... ™
... memory shard edge data.

... edge values of the P-1

sliding windows.

... updated vertex values.

Figure 5: Main execution flow. Sequence of operations
for processing one execution interval with GraphChi.

GraphChi: Programming Model

 Similar to programs for Pregel or GraphlLab
* Pregel uses messaging, GraphChi directly modifies vertices and edges
* Graphlab directly reads and modifies neighboring vertices, GraphChi does not

GraphChi Implementation

Algorithm 4: Pseudo-code of the vertex update-
function for weighted PageRank.

typedef: VertexType float
Update(vertex) begin
var sum «— ()
for e in vertex.inEdges() do
| sum += e.weight * neighborRank(e)
end
vertex.setValue(0.15 + 0.85 * sum)
broadcast(vertex)

oo 0 N Ut AW N -

end

GraphChi Implementation

Algorithm 5: Type definitions, and implementations
of neighborRank() and broadcast() in the standard
model.

typedef: EdgeType { float weight, neighbor_rank; }
neighborRank(edge) begin

end

return edge.weight * edge.neighbor_rank

broadcast(vertex) begin

end

for e in vertex.outEdges() do
‘ e.neighbor_rank = vertex.getValue()
end

GraphChi Implementation

Algorithm 6: Datatypes and implementations of
neighborRank() and broadcast() in the alternative
model.

1 typedef: EdgeType { float weight; }

2 float[] iIn_.mem_vert

3 neighborRank(edge) begin

4 ‘ return edge.weight * in_mem_vert[edge.vertex_1d]
5 end

6 broadcast(vertex) /* No-op */

GraphChi Applications

* SpMV Kernels, PageRank

* Graph Mining

* Collaborative Filtering

* Probabilistic Graphical Model

Experimental Setup

* Test Setup: Mac Mini with 8GB of main memory, 256GB SSD drive,
750GB hard drive + 8 core server with 64GB RAM

Graph name Vertices | Edges || P | Preproc.
live-journal [3] 4.8M 69OM 3 0.5 min
netflix [6] 0.5M 99M 20 I min
domain [44] 26M 0.37B || 20 2 min
twitter-2010 [26] 42M 1.5B 20 10 min
uk-2007-05 [11] 106M 3.7B 40 31 min
uk-union [11] 133M 5.4B 50 33 min
yahoo-web [44] 1.4B 6.6B 50 37 min

Table 1: Experiment graphs. Preprocessing (conversion
to shards) was done on Mac Mini.

Experimental Results

* No direct models to compare against

* Runtimes are within a constant factor when compared to other
distributed systems with more cores

* PowerGraph is a distributed version of GraphChi, can perform one
iteration of PageRank on twitter-2010 in 5 seconds (GraphChi: 158s)

Experimental Results

Application & Graph Iter.| Comparative result GraphChi (Mac Mini) | Ref
Pagerank & domain 3 GraphLab[30] on AMD server (8 CPUs) 87 s 132s -
Pagerank & twitter-2010 5 Spark [45] with 50 nodes (100 CPUs): 486.6 s 790 s [38]
Pagerank & V=105M, E=3.7B | 100 | Stanford GPS, 30 EC2 nodes (60 virt. cores), 144 min | approx. 581 min [37]
Pagerank & V=1.0B, E=18.5B | 1 Piccolo, 100 EC2 instances (200 cores) 70 s approx. 26 min [36]
Webgraph-BP & yahoo-web 1 Pegasus (Hadoop) on 100 machines: 22 min 27 min [22]
ALS & netflix-mm, D=20 10 | GraphLab on AMD server: 4.7 min 9.8 min (in-mem)

40 min (edge-repl.) [30]
Triangle-count & twitter-2010 | - Hadoop, 1636 nodes: 423 min 60 min [39]
Pagerank & twitter-2010 1 PowerGraph, 64 x 8 cores: 3.6 s 158s [20]
Triange-count & twitter- 2010 | - PowerGraph, 64 x 8 cores: 1.5 min 60 min [20]

Table 2: Comparative performance. Table shows a selection of recent running time reports from the literature.

Scalability and Performance

* Performance measured as throughput (number of edges processed in
a second)
e GraphChi can process 5-20million edges/s on Mac Mini

* Using a hard drive for memory is sufficient, can be improved by adding more
hard drives

* Using different block sizes can change efficiency

Scalability and Performance

B Loading [JExecute Updates (Computation)

0% 20% 40% 60% 80% 100% 120%

I

Matrix factorization

(2 cpus)

(4 cpus)

Triangle counting

(2 cpus)
(4 cpus)

Conn. components

(2 cpus)

(4 cpus)

Figure 6: Relative runtime when varying the number of
threads used used by GraphChi. Experiment was done on
a MacBook Pro (mid-2012) with four cores.

Application SSD | In-mem | Ratio
Connected components 45s 18s 2.5x
Community detection 110s 46s 2.4x
Matrix fact. (D=5, 5 iter) 114 s 65s 1.8x
Matrix fact. (D=20, 5 iter.) | 560s 500s 1.1x

Table 3: Relative performance of an in-memory version
of GraphChi compared to the default SSD-based imple-
mentation on a selected set of applications, on a Mac Mini.
Timings include the time to load the input from disk and
write the output into a file.

Strengths and Weaknesses

* Paper was well organized and pseudocode helped with overall
understanding of the content

* Some parts were repetitive, like the description of how the algorithm
was the same as the description of GraphChi

* Results are promising, but no real benchmark to how “good” they are

Discussion Questions

* GraphChi is designed for sparse real-world graphs. Does it perform as
well on dense graphs?

* How well does GraphChi perform with different graph algorithms (e.g.
Bellman-Ford, Dijkstra’s, etc.)?

* How does the number of computations/iterations necessary to run
GraphChi compare with other graph computation algorithms?

