
GraphChi: Large-Scale Graph
Computation on Just a PC

By: Aapo Kyrola (Carnegie Mellon University), Guy Blelloch (Carnegie
Mellon University), Carlos Guestrin (University of Washington)

Presentation by: Jessica Zhu

Motivations

• Real-world graphs are huge
• Computation on these graphs is very expensive and time-consuming
• Distributed graph algorithms are hard to understand

Contributions

• Parallel Sliding Windows (PSW)
• Small number of non-sequential accesses to disk
• Implements asynchronous model of computation
• Processes large graphs from disk with theoretical guarantees

• GraphChi
• Design, evaluation, and implementation in C++
• Able to solve problems previously only solvable on cluster computing

Disk-Based Graph Computation

• Existing models are vertex-centric

Disk-Based Graph Computation

• Existing models use the Bulk-Synchronous Parallel (BSP) model
• Update functions use values from previous iteration
• Simple to implement, allows maximum parallelization
• Synchronization steps (after each iteration) are expensive

• Asynchronous model
• Update functions use most recent values of edges and vertices
• Ordering of updates is dynamic
• Converges in situations where BSP does not

Disk-Based Graph Computation

• Compressed Sparse Row and Compressed Sparse Column storage
• Modifying the value of a vertex
• New value must be read from set of out-edges (random read) OR
• New value is written to in-edge list (random write)

• Possible Solutions
• SSD as a memory extension: can’t handle accessing millions of edges per

second
• Exploiting locality: unpredictable, depends highly on structure of graph
• Graph compression: doesn’t work if data is stored with the nodes and edges

Parallel Sliding Windows (PSW)

• Loads subgraph from disk
• Updates vertices and edges
• Writes updated values to disk

PSW: Loading subgraph from disk

• Vertices V are split into P disjoint intervals
• Each interval has a shard that stores all edges going into the interval
• Edges are stored in order of their source
• Intervals balances number of edges in each shard
• Does graph computation in execution intervals
• First load shard(p) into memory, call it memory-shard
• Out-edges are stored in consecutive chunks in the other shards, requiring P-1

block reads
• Edges for interval(p+1) are stored immediately after interval(p)
• When PSW moves onto the next interval, it slides over window, other shards are

called sliding shards
• Window length is variable if degree distribution is not uniform

PSW: Loading subgraph from disk

PSW: Updating vertices and edges

• Subgraph for interval p has been loaded to disk
• Call update-function for each vertex in parallel
• External determinism prevents race conditions (accessing edges

concurrently), guarantees each run of PSW produces same result
• To implement: vertices with end-points of edges in the same interval are

marked as critical and executed sequentially (in line with the asynchronous
model)

PSW: Updating vertices and edges

PSW: Updating vertices and edges

PSW: Writing updated values to disk

• Edges are loaded from disk in large blocks which are cached in
memory
• Modifications directly modify blocks themselves, PSW overwrites old

data when it updates
• Active sliding window is rewritten to disk
• Number of non-sequential writes for an execution interval is P

PSW in action

Evolving Graphs

• Support changes in graph structure
• Allow adding edges to graphs
• Allows removal of edges (flag them, delete when shard is rewritten to disk)

• Divide shard into P logical parts: part j contains edges with source in
the interval j
• Edge-buffer(p, j) is in-memory
• When edge is added to graph, add it to corresponding edge-buffer
• When interval is loaded from disk, edges from edge-buffers are added to in-

memory graph
• If number of edges in edge-buffers exceeds limit, write edges to disk

Evolving Graphs

I/O Complexity

• Cost = number of block transfers from disk to main memory
• B: size of block transfer
• Total data size = |E|, as each edge is stored once
• Shards have sizes |E|/P
• Each edge is accessed twice (once in each direction)
• Each edge is written once or twice (once if both endpoints of edge belong to

same vertex interval)
• Often PSW requires P non-sequential disk seeks to load edges from the P-1 sliding

shards for an execution interval

GraphChi System Design

• Shard Data Format
• Fast to generate and read
• Adjacency shard stores an edge array for each vertex in order
• Edge shard data is a flat array of edge values in user defined type

GraphChi System Design: Preprocessing

• Sharder
• Counts the in-degree of each vertex, computes prefix sum to divide graph into

equal intervals (one pass)
• Write each edge to a temporary file of the owning shard (one pass)
• Process each temporary file to sort the edges and compress them
• Compute a binary degree file with in and out degree of each vertex

• P is chosen so that the largest shard is at most ¼ size of available
memory (other memory needed to store pointers, buffers, auxiliary
data structures)
• Total cost: !|#|$ + |&|

$

GraphChi Implementation

• Efficient subgraph construction
• Calculates the exact amount of memory needed to store and perform

computation on an execution interval
• Can do this using degreefile, which stores all in and out degrees of each

vertex (using prefix sum, can calculate exactly how many edges they need to
store)
• I/O cost: 2 " /$

• Selective scheduling
• Update can flag a neighboring vertex to be updated, typically if edge value

changes significantly
• Can be used to implement incremental computation: when an edge is

created, its source or destination vertex is added to the schedule

GraphChi: Programming Model

• Adjacency shard: stores edge array for each vertex in order
• Edge data shard: flat array of edge values

• Sharder: handles preprocessing, which is I/O efficient and can be
done with limited memory
• Counts the in-degree of each vertex and calculates prefix sum to divide the

graph into P equal intervals (one pass)
• Write each edge to temporary file of owning shard (one pass)
• Process each of these files to sort edges and write in compact format
• Compute binary degreefile (both in and out edges) for every vertex

GraphChi: Execution

• Efficient subgraph construction
• Calculate exact memory needed for an execution interval using degreefile
• Use multithreading to access the vertices needed

• Sub intervals
• Divide execution interval into sub intervals (some intervals may have lots of edges

that don’t fit into memory)
• Allows same shard files to be used with different amounts of memory, I/O costs not

affected
• Evolving graphs

• Keep track of changing degreefiles, vertex interval sizes
• Selective scheduling

• Updates flag neighboring vertices to also be updated

GraphChi Implementation

GraphChi: Programming Model

• Similar to programs for Pregel or GraphLab
• Pregel uses messaging, GraphChi directly modifies vertices and edges
• GraphLab directly reads and modifies neighboring vertices, GraphChi does not

GraphChi Implementation

GraphChi Implementation

GraphChi Implementation

GraphChi Applications

• SpMV Kernels, PageRank
• Graph Mining
• Collaborative Filtering
• Probabilistic Graphical Model

Experimental Setup

• Test Setup: Mac Mini with 8GB of main memory, 256GB SSD drive,
750GB hard drive + 8 core server with 64GB RAM

Experimental Results

• No direct models to compare against
• Runtimes are within a constant factor when compared to other

distributed systems with more cores
• PowerGraph is a distributed version of GraphChi, can perform one

iteration of PageRank on twitter-2010 in 5 seconds (GraphChi: 158s)

Experimental Results

Scalability and Performance

• Performance measured as throughput (number of edges processed in
a second)
• GraphChi can process 5-20million edges/s on Mac Mini
• Using a hard drive for memory is sufficient, can be improved by adding more

hard drives
• Using different block sizes can change efficiency

Scalability and Performance

Strengths and Weaknesses

• Paper was well organized and pseudocode helped with overall
understanding of the content
• Some parts were repetitive, like the description of how the algorithm

was the same as the description of GraphChi
• Results are promising, but no real benchmark to how “good” they are

Discussion Questions

• GraphChi is designed for sparse real-world graphs. Does it perform as
well on dense graphs?
• How well does GraphChi perform with different graph algorithms (e.g.

Bellman-Ford, Dijkstra’s, etc.)?
• How does the number of computations/iterations necessary to run

GraphChi compare with other graph computation algorithms?

