
LUMOS: DEPENDENCY-DRIVEN
DISK-BASED GRAPH PROCESSING Endrias Kahssay

MOTIVATION

Disk based processing allows graph processing to scale beyond available memory.

Based on partitioning graph and streaming partitions.

I/O intensive.

MOTIVATION

Want strong consistency (Bulk Synchronous Parallel (BSP)) for the programmer.

Current approaches with BSP optimized for min I/O per iteration, but not globally.

Want faster performance!

ENTER LUMOS

First out of order execution with synchronous semantics.

Out of order is used to reduce I/O by computing multiple iterations of a vertex value
at once.

1.8x faster than state of art: Grid Graph.

BACKGROUND: BSP

Synchronous stepwise execution semantics.

Computation in iterations on vertices, and serialization between iterations.

Makes it easy for the programmer to reason about.

PARTITIONING

In disk-based graph processing, graph is too large to fit in memory.

Vertices are separated into P partitions, and each partition holds incoming edges to
the vertices inside it.

Iterative engine streams through partitions in fixed order, and then does computation
across vertex values. Repeat until convergence.

RELATED WORK

Synchronous Out-of-Core Graph Processing
 GraphChi, X-Stream, GridGraph
 Iterations are serialized
 GridGraph is state of art in performance, due to its mechanism for graph storage on disk

Asynchronous Out-of-Core Graph Processing
 CLIP and Wonderland
 Designed for asynchronous algorithms like SSSP.
 Violate BSP

LUMOS INSIGHTS

 Synchronous Graph Processing is stricter than BSP, losing performance.

 Future value computation: compute values of vertices when their constraints are satisfied.

 No serialization between iterations, and explicitly satisfy the BSP constraint.

SYNCHRONOUS DEPENDENCIES

Vertex value in a given iteration depends on incoming neighbors value from previous
iteration.

A static graph property

No direct dependence between vertices that are not connected.

PROPGATION

First idea: compute values for nodes for iteration t+1 if all its incoming neighbors
value from iteration t are available.

In partition processing, values for vertices in partition P are available when P is
processed.

Promising direction, but only works for low-in-degree vertices (only 1-4% edge
saving in their experiment)

RELAX!

We can relax the precondition so that we don’t need all incoming neighbors to be
ready.

As long we use an associative aggregator operator for combining neighbors values,
we can keep a partial aggregate for the next time step.

PROGATION

40-50% of values successfully propagated in experiments.

Edges corresponding to propagations don’t need to be loaded in the next time step.

HOW FAR?

Define D as the max distance of Propagation (max difference between current
iteration and iteration number for any of the nodes).

Traditional systems achieve : 1. LUMOS: > 1

Propagations drastically decrease after 2, so LUMOS sticks with 2 (iteration t and
t+1).

GRAPH LAYOUT

Value propagations can be statically determined because it’s a property of the
underlying graph.

Create separate graph layouts to avoid reading edges whose dependency is
already satisfied.

For D=2, we create a primary and secondary layout.

INTRA-PARTITION PROPAGATION

Natural graphs possess locality due to graph collection strategies / numbering =>
chunk based numbering has locality.

Partitions have large number of edges that don’t cross partitions.

Propagate this internally by buffering the partition in memory!

LUMOS SYSTEM

Built on top of Gridgraph, which is a state of the art out-of-core processing system.

Three key programming interfaces:

ProcessPrimary

ProcessSecondary

VertexMap

I/O ANALYSIS

Algorithm alternates between primary and secondary layout. Alpha is typically over 0.7.

GRAPH LAYOUT / PARTITIONING

Objective:

STRATEGIES

EXPERIMENTS

Performance tests: run on h1.x2 large with 8 vCPUs, 32GB memory, 2TB
HDD.
Disk speed: 278 MB/sec, memory: 9.6GB/sec

I/O scaling: run on a machine disk bandwidth of 195 MB to 768 MB/sec,
and another with 1.2GB/sec to 3.9 GB/sec.

PERFORMANCE
TwitterMPI (TT) ~15 – 45GB on disk,
2.0B edges

Friendster (FT), ~20- 60 GB on disk,
2.5B edges

Yahoo (YH), ~50 -150 GB on disk, 6.6B
edges

BANDWIDTH TEST

GRAPH PARTITION STRATEGY

Highest out in degree and highest in degree achieves 13 – 89%
propagations.

Highest Deg. Ratio First achieves 51-88% propagations.

CONCLUSION

LUMOS is an out of order graph framework that provides synchronous processing
guarantees.

Future propagation allows it to reduce I/O misses by reducing the number of edges
that are loaded in half of the iterations.

It computes future values across 71-97% of edges, and accelerates out-of-core
graph processing by up to 1.8x.

STRENGTHS AND WEAKNESSES

Well organized paper, and easy to understand.

Experiments don’t compare against other graph frameworks / and more obsecure
graph algorithms.

Graph partitioning was relatively simple, would have been interesting to see more
complex approaches.

QUESTIONS

What other heuristics might be interesting for graph partitioning given the objective
function?

Is there a way to avoid storing D layouts, and still get the I/O benefits?

How does it compare with other asynchronous graph frameworks?

