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Motivations

* Real world graphs are billions of edges large and are constantly
changing

* Statically computing analysis on these graphs isn’t sufficient

* Dynamic graph algorithms keep graphs up to date without re-
computing for the entire graph



Background

* Connected component: there is a path between any two vertices in
the same connected component

* If you know the connected components in a graph, determining if
adding an edge joins two connected components is easy O(1), but
determining if deleting an edge separates a connected component is
harder



Related Work

* Many existing algorithms
* Using DFS or BFS
* Treating dense graphs as sparse graphs
* Coloring vertices based on their degrees

* Too expensive in practice + too much storage
* Don’t take into account properties of real-world graphs
* Don’t consider multi-core systems



Contributions

* First dynamic algorithm for connected components that does not
involve static recomputation

* Keeps an exact labeling of connected components by applying
additions and deletions in batches

e STINGER: a high-performance graph data structure to solve dynamic
graph problems
* Faster insertions and better locality than adjacency lists
* Designed for parallelism



The Algorithm: Challenges

e Correctness
e Parallelism

* Time Complexity
* Must be better than a static implementation

e Storage Complexity

* Better than a static implementation
e Preferred: O(V), Max: O(V+E)

* Deletions: minimize false negatives (when you think a deletion
creates two connected components but doesn’t actually)



The Algorithm: Parent—Neighbors Subgraph

* Extracted by running BFS on the original graph
* One iteration of BFS per connected component

* Each vertex knows who its parents and neighbors (same level) are

* Place a threshold on how much a vertex can store, memory becomes
O(V*threshold)

 Storing everything would cost O(V+E) space
e Memory: O(V)



The Algorithm: Data Structure + Details

Table 1
THE DATA STRUCTURES MAINTAINED WHILE TRACKING DYNAMIC

ONNECTED COMPONENTS.

Name Description Type Size (Elements)

C Component labels array O(V)

Size Component sizes array O(V)

Level Approximate distance from the root array O(V)

PN Parents and neighbors of each vertex array of arrays O(V -threshpn) = O(V)
Count Counts of parents and neighbors array O(V)

threshpn Maximum count of parents and neighbors for a given vertex value O(1)

E; Batch of edges to be inserted into graph array O(batch size)

Er Batch of edges to be deleted from graph array O(batch size)




The Algorithm: Initialization

* Every vertex’s level is not exact, but an approximation of how far it is
from the root

* Every vertex’s level starts at infinity, counter =0
e Start with arbitrary vertex, look at all of its neighbors concurrently
* Parents are always added before neighbors

* Synchronization handled through atomic compare-and-swap
operations on level and fetch-and-add to PN and counter



The Algorithm

Algorithm 1 A parallel breadth-first traversal that
extracts the parent-neighbor subgraph.

Input: G(V, E)
Output: C,4, Size, Level, PN, Count
1: for v € V do

2: Level[v] « oo, Count[v] < 0

3: for v € V do

4 if Level[v] = oo then

5- Q[O] — v, Qstart — 0, Qend «— 1

6: Level[v] < 0, Cigq[v] « v

7: while Qstart ;é Qend do

8 Qstop — Qend

9: for i < Qstart t0 Qstop in parallel do

10: for each neighbor d of Q] do

11: if Level[d] = oo then

12: Q[Qend] «—d

13: Qend — Qend + 1

14: Level[d] «+ Level[Q[i]] + 1
15: Ciqld] + C;a[Q]i]]

16: if Count|d] < threshpn then

17: if Level[Q[i]] < Level[d] then
18: PNg[Count[d]] + Q][]
19: Count[d] < Count[d] + 1
20: else if Level[Q[i]] = Level|d] then
21: PNg4[Count[d]] + —Q]i]
22: Count[d] < Count[d] + 1
23: Qstart — Qstop

24: Size[v] < Qend




Insertions

* The added edge (s, d) is within one connected component

* Check the levels of s and d to see if there are new parent or neighbor
connections

* If level(s) <= level(d) and counter(d) < threshold, s is a parent of d
* If counter(d) = threshold, look through parents and neighbors to replace
something with s
* The added edge (s,d) joins two components

* Parallel BFS starts at joint of smaller connected component and adds all
vertices from that component into PN of larger component



Deletions

* Deleting an edge (s, d): check from both s and d’s perspective
(undirected graph will be symmetric in this regard)

* If level(s) <= level(d), if siis in PN(d), it is removed and we look for a remaining
parent in PN(d)

* If a parent still exists, deletion is safe in this direction

* If a parent does not still exist, set a marker that is only removed once a new parent for d
is found and update PN

* Run BFS using d as the root node, and see if it encounters a vertex with a level less than
it in the original component

* Worst case: must look at all edges in the graph



Experimental Setup

Table 11

GRAPH SIZES USED IN OUR EXPERIMENTS FOR TESTING THE
ALGORITHM. MULTIPLE GRAPHS OF EACH SIZE WERE USED.

Totals edge per average degree

Vertices 8 16 32 64
2M 16M 32M 64M 128M
4M 32M 64M 128M | 256M
16 M 128M | 256M | 512M —




Experimental Results
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Figure 2. Average number of unsafe deletes in PN data structure for
batches of 100K updates as a function of the average degree (x-axis) and
threshppn (bars).




Scalability
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Figure 3. Strong scaling results on RMAT-22 graphs with different average
degree as a function of the number of threads. Results include three graphs
at each average degree.



Performance
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Figure 1. Average number of inserts and deletes in PN array for batches of 100K updates for RMAT-22 graphs. The subfigures are for different values
of threshpp. Note that the ordinate is dependent on the specific bar chart. The charts for RMAT-21 graphs had very similar structure and have been
removed for the sake of brevity.



Performance
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Figure 5. Fraction of the update time spent updating connected components
over time spent updating the graph structure and connected components.
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Figure 6. Speed up over performing static recomputation after each batch
on scale 24 graphs for three graphs at each edge factor using 64 threads.



Strengths and Weaknesses

* Well organized paper, clear sections and explanations of algorithm
* Pseudocode is very detailed and helpful

* Lacking comparison to other algorithms (in terms of runtime,
correctness, etc.)

* Not compared against real-world graphs



Discussion Questions

* What is the optimal tradeoff between balancing unsafe deletes and
performance?

* Is there a theoretical way to determine the optimal value of the
threshold?



