
A New Parallel Algorithm for 
Connected Components in 

Dynamic Graphs 
By: Robert McColl, Oded Green, David A. Bader 

College of Computing, Georgia Institute of Technology 

Presentation by: Jessica Zhu



Motivations

• Real world graphs are billions of edges large and are constantly 
changing
• Statically computing analysis on these graphs isn’t sufficient
• Dynamic graph algorithms keep graphs up to date without re-

computing for the entire graph



Background

• Connected component: there is a path between any two vertices in 
the same connected component
• If you know the connected components in a graph, determining if 

adding an edge joins two connected components is easy O(1), but 
determining if deleting an edge separates a connected component is 
harder



Related Work

• Many existing algorithms
• Using DFS or BFS
• Treating dense graphs as sparse graphs
• Coloring vertices based on their degrees

• Too expensive in practice + too much storage
• Don’t take into account properties of real-world graphs
• Don’t consider multi-core systems



Contributions

• First dynamic algorithm for connected components that does not 
involve static recomputation
• Keeps an exact labeling of connected components by applying 

additions and deletions in batches
• STINGER: a high-performance graph data structure to solve dynamic 

graph problems
• Faster insertions and better locality than adjacency lists
• Designed for parallelism



The Algorithm: Challenges

• Correctness
• Parallelism
• Time Complexity
• Must be better than a static implementation

• Storage Complexity
• Better than a static implementation
• Preferred: O(V), Max: O(V+E)

• Deletions: minimize false negatives (when you think a deletion 
creates two connected components but doesn’t actually)



The Algorithm: Parent—Neighbors Subgraph

• Extracted by running BFS on the original graph
• One iteration of BFS per connected component

• Each vertex knows who its parents and neighbors (same level) are 
• Place a threshold on how much a vertex can store, memory becomes 

O(V*threshold)
• Storing everything would cost O(V+E) space

• Memory: O(V)



The Algorithm: Data Structure + Details



The Algorithm: Initialization

• Every vertex’s level is not exact, but an approximation of how far it is 
from the root
• Every vertex’s level starts at infinity, counter = 0
• Start with arbitrary vertex, look at all of its neighbors concurrently
• Parents are always added before neighbors
• Synchronization handled through atomic compare-and-swap 

operations on level and fetch-and-add to PN and counter



The Algorithm



Insertions

• The added edge (s, d) is within one connected component
• Check the levels of s and d to see if there are new parent or neighbor 

connections 
• If level(s) <= level(d) and counter(d) < threshold, s is a parent of d
• If counter(d) = threshold, look through parents and neighbors to replace 

something with s
• The added edge (s,d) joins two components
• Parallel BFS starts at joint of smaller connected component and adds all 

vertices from that component into PN of larger component



Deletions

• Deleting an edge (s, d): check from both s and d’s perspective 
(undirected graph will be symmetric in this regard)
• If level(s) <= level(d), if s is in PN(d), it is removed and we look for a remaining 

parent in PN(d)
• If a parent still exists, deletion is safe in this direction
• If a parent does not still exist, set a marker that is only removed once a new parent for d 

is found and update PN
• Run BFS using d as the root node, and see if it encounters a vertex with a level less than 

it in the original component

• Worst case: must look at all edges in the graph



Experimental Setup



Experimental Results



Scalability



PerformancePerformance



Performance



Strengths and Weaknesses

• Well organized paper, clear sections and explanations of algorithm
• Pseudocode is very detailed and helpful
• Lacking comparison to other algorithms (in terms of runtime, 

correctness, etc.)
• Not compared against real-world graphs



Discussion Questions

• What is the optimal tradeoff between balancing unsafe deletes and 
performance?
• Is there a theoretical way to determine the optimal value of the 

threshold?


