
Work-efficient
parallel union-find

Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirthapura, Kun-LungWu

Presented by Áron Ricardo Perez-Lopez

Incremental Graph Connectivity

• Maintains information about connected components.

• Edges can be added.

• No edge deletion.

• Model of computation: homogeneous batches of queries.

Union-Find Data Structure

• UNION(U, V):
• Combine sets containing u and v.

• Return the combined set.

• FIND(U):
• Return the set containing u.

• Complexity:
• 𝑂(𝑚 + 𝑞 𝛼 𝑚 + 𝑞) for m UNION

and q FIND operations.

• Equivalently, 𝑂(𝛼 𝑛) amortized
for both operations.

• Applications:
• Kruskal’s algorithm.

Basic idea: Trees!

7

5 1

3

9

2 4
UNION(1, 2)

7

5 1

3

9

2 4

7

5 1

3

7

5 1

3

FIND(1)

Improvements

• Union by size (or rank)

• Path compression

7

5
9

UNION(7, 9)

9

7

5

7

5 9

7

5 1

3

FIND(3)

7

5 1

3

7

5 13

Parallelizing Union

• Can we just execute all operations in parallel?
• No, because of races.
• Also, not efficient.

• Idea 1: group operations into disjoint sets.

• Idea 2: join one set using divide-and-conquer.

• Algorithm: BULK-UNION

1. Relabel each edge with its root.
2. Remove self-loops.
3. Compute connected components in this graph.
4. Join each component in parallel. Within one component:

1. Divide edges in half (minus middle edge) and recurse.
2. Add middle edge.

Parallelizing Find – the Simple Way

• Without path compression, FIND is read-only.

• We can just execute all queries in parallel.

• Runtime is 𝑂(log 𝑛).

• Can we do better?

Parallelizing Find – Two-phase Algorithm

• Idea: separate process into two parts: search and compress.

• Algorithm:
1. Search: BFS from all queried vertices simultaneously.

• Stop when we would repeat work.

• Store (reverse) edges for second phase.

• Store found roots.

• All operations inside the loop are parallelized.

2. Compress: BFS backwards, from the roots to the original vertices.
• Also compute answers (roots) on the way.

Response Distributor

• Challenge: we only have an edge list for the second phase, but we
want to compute the next frontier in linear work and polylog depth.

• Idea 1: sort edges by source vertex – practically equivalent to CSR.

• Idea 2: sort by hash instead of actual value.

Experimental Results I: Serial Runtime

Experimental Results II: Parallel Speedup

random local16 rMat16

Green line: performance of optimized single-threaded implementation.

Discussion Questions

• What are your thoughts on the difference between the proposed
algorithm and the one the authors actually implemented?

• How does this algorithm compare to the one from McColl et al? Is it
worth exchanging the ability to remove edges for near-constant
runtime?

