Work-efficient
parallel union-find

Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirthapura, Kun-LungWu

Presented by Aron Ricardo Perez-Lopez

Incremental Graph Connectivity

* Maintains information about connected components.
* Edges can be added.

* No edge deletion.

« Model of computation: homogeneous batches of queries.

Union-Find Data Structure

* UNION(U, V): * Complexity:
* Combine sets containing u and v. * O((m+ q)a(m + q)) for m UNION
* Return the combined set. and q FIND operations.

e Equivalently, O(a(n)) amortized

* FIND(U): for both operations.

* Return the set containing u. o
* Applications:

e Kruskal’s algorithm.

Basic idea: Trees!

& UNION(1, 2)

FIND(1)

Improvements

e Union by size (or rank)

oo =@ .0

* Path compression

FIND(3) 1
fe —_— f —_— e@a

Parallelizing Union

e Can we just execute all operations in parallel?

* No, because of races.
e Also, not efficient.

* Idea 1: group operations into disjoint sets.
* Idea 2: join one set using divide-and-conquetr.

* Algorithm: BULK-UNION
1. Relabel each edge with its root.
2. Remove self-loops.
3. Compute connected components in this graph.
4. Join each component in parallel. Within one component:
1. Divide edges in half (minus middle edge) and recurse.
2. Add middle edge.

Parallelizing Find — the Simple Way

* Without path compression, FIND is read-only.
* We can just execute all queries in parallel.
* Runtime is O(logn).

e Can we do better?

Parallelizing Find — Two-phase Algorithm

* ldea: separate process into two parts: search and compress.

e Algorithm:

1. Search: BFS from all queried vertices simultaneously.
* Stop when we would repeat work.
 Store (reverse) edges for second phase.
e Store found roots.
* All operations inside the loop are parallelized.

2. Compress: BFS backwards, from the roots to the original vertices.
* Also compute answers (roots) on the way.

Response Distributor

* Challenge: we only have an edge list for the second phase, but we
want to compute the next frontier in linear work and polylog depth.

 |dea 1: sort edges by source vertex — practically equivalent to CSR.
 |dea 2: sort by hash instead of actual value.

Experimental Results |: Serial Runtime

TABLE2 Runningtimes (in seconds) on 1 thread of the baseline
union-find implementation (UF) with and without path compression
and the bulk-parallel version as the batch size is varied

Graph UF UF Bulk-Parallel using batch size

(nop.c.) (p.c) 500K 1M 5M 10M

random 44.63 18.42 6543 66.57 75.20 77.89
3Dgrid 30.26 14.37 61.10 62.00 71.74 75.07
local5 44.94 18.51 65.84 66.77 75.33 78.23
locallé 154.40 46.12 11434 108.92 11480 117.55
rMat5 33.39 18.47 66.98 68.48 74.97 78.69
rMatlé 81.74 35.29 83.27 76.64 76.03 77.62

7x107
6x107
5x107
4x107
3x107
2x107

1x107

Experimental Results Il: Parallel Speedup

random
T T
batch size=10M —e—
batch size=bM =——t=— -
P i i | batch size=1M ——
12 4 8 16 20 20c

locall6

7x107
6x107
Ex107 |-
4x107 -
3x107

2x10” |-

1x107

batch size=10M —e—
batch size=5M =——d— -
batch size=1M =——

16

20

20c

Green line: performance of optimized single-threaded implementation.

rMatl6

batch size=10M =——e— "]
batch size=5M =——tt=— _|

batch size=1M —B—

20

20c

Discussion Questions

* What are your thoughts on the difference between the proposed
algorithm and the one the authors actually implemented?

* How does this algorithm compare to the one from McColl et al? Is it
worth exchanging the ability to remove edges for near-constant
runtime?

