
Exact and Parallel Triangle Counting 
in Dynamic Graphs

Authors: Devavret Makkar, David A. Bader, Oded Green
Slides by: Obada Alkhatib



Triangle Counting Problem
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vertex triplets (u, v, t) s.t.   (u, v), (v, t), (u, t) ∈ E.

● 1 permutation of each triplet counted.
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Applications
● Clustering coefficient analytic.
● Pattern matching in social networks.



Static Triangle Counting Approaches

● Linear algebra approach involving matrix multiplication -
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● Could count all triangles from scratch after each batch 

update - very expensive.
● Update triangles of affected vertex due to edge 

insertion/deletion - still quite expensive.
● Idea: update triangle count for affected edge instead - 

asymptotically less expensive.
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● STINGER uses blocked linked lists to store edges. This 

leads to a compromise between low space usage and high 
data locality.

● However, no efficient way for list intersection or sorting.
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● However, no efficient way for list intersection or sorting.
● cuSTINGER uses dynamic arrays as adjacency lists. Better 

locality and suitable for sorting/merging.



Dynamic Graph Updates
● Handle insertions and deletions separately.
● Make temporary update-graph G’ = (V, E’), where E’ is 

the set of next batch update edges.
● After G’ is constructed, sort each adjacency list - 

which is a dynamic array in cuSTINGER.
● Use fastest possible sorting algorithm (radix sort in the 

paper, O(|E’|)).
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● Main challenge is possible new triangles from new and 

old edges.
● Otherwise would just count triangles in G’.
● Three types of new triangles: triangles with 1 new 

edge (       ), triangles with 2 new edges (       ), 
triangles with 3 new edges (       ).
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Dynamic Triangle Counting
● Deletion simpler - no overcounting, so no 

inclusion/exclusion.
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Dynamic Triangle Counting
● Complexity analysis:

 

● Deletion similar.
● Additional optimizations possible, e.g. vertex ordering based 

on work by Shun & Tangwongsan. Significantly reduces 
overcounting.



Performance Analysis
● Real-world graphs used.
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Conclusion
● Proposed algorithm 100X-819X faster than previous 

approaches.
● Paper style very straightforward and easy to follow.
● More comparisons to other algorithms might have been 

more helpful.


