
Exact and Parallel Triangle Counting
in Dynamic Graphs

Authors: Devavret Makkar, David A. Bader, Oded Green
Slides by: Obada Alkhatib

Triangle Counting Problem

● Given graph G(V, E) with n nodes and m edges, count
vertex triplets (u, v, t) s.t. (u, v), (v, t), (u, t) ∈ E.

● 1 permutation of each triplet counted.

Triangle Counting Problem

● Given graph G(V, E) with n nodes and m edges, count
vertex triplets (u, v, t) s.t. (u, v), (v, t), (u, t) ∈ E.

● 1 permutation of each triplet counted.

Applications
● Clustering coefficient analytic.
● Pattern matching in social networks.

Static Triangle Counting Approaches

● Linear algebra approach involving matrix multiplication -
 time,

● Adjacency list intersection, complexity
where is the maximum node degree in G.

Static Triangle Counting Approaches

● Linear algebra approach involving matrix multiplication -
 time,

● Adjacency list intersection, complexity
where is the maximum node degree in G.

Triangle Counting: Dynamic Graphs
● Could count all triangles from scratch after each batch

update - very expensive.
● Update triangles of affected vertex due to edge

insertion/deletion - still quite expensive.

Triangle Counting: Dynamic Graphs
● Could count all triangles from scratch after each batch

update - very expensive.
● Update triangles of affected vertex due to edge

insertion/deletion - still quite expensive.
● Idea: update triangle count for affected edge instead -

asymptotically less expensive.

Used Framework/Data Structure
● STINGER uses blocked linked lists to store edges. This

leads to a compromise between low space usage and high
data locality.

● However, no efficient way for list intersection or sorting.

Used Framework/Data Structure
● STINGER uses blocked linked lists to store edges. This

leads to a compromise between low space usage and high
data locality.

● However, no efficient way for list intersection or sorting.
● cuSTINGER uses dynamic arrays as adjacency lists. Better

locality and suitable for sorting/merging.

Dynamic Graph Updates
● Handle insertions and deletions separately.
● Make temporary update-graph G’ = (V, E’), where E’ is

the set of next batch update edges.
● After G’ is constructed, sort each adjacency list -

which is a dynamic array in cuSTINGER.
● Use fastest possible sorting algorithm (radix sort in the

paper, O(|E’|)).

Dynamic Graph Updates
● To get output graph, merge corresponding sorted

adjacency lists - which cuSTINGER allows efficiently.
● Cost is

Dynamic Graph Updates
● To get output graph, merge corresponding sorted

adjacency lists - which cuSTINGER allows efficiently.
● Cost is

● Sometimes, cuSTINGER allows in-place merging.

Dynamic Graph Updates
● To get output graph, merge corresponding sorted

adjacency lists - which cuSTINGER allows efficiently.
● Cost is

● Sometimes, cuSTINGER allows in-place merging.

Dynamic Graph Updates
● Similar steps for graph deletions, but separate.
● Same overall cost due to use of dynamic arrays:

Dynamic Graph Updates
● Similar steps for graph deletions, but separate.
● Same overall cost due to use of dynamic arrays:

Dynamic Triangle Counting
● Main challenge is possible new triangles from new and

old edges.
● Otherwise would just count triangles in G’.
● Three types of new triangles: triangles with 1 new

edge (), triangles with 2 new edges (),
triangles with 3 new edges ().

Dynamic Triangle Counting
● Main challenge is possible new triangles from new and

old edges.
● Otherwise would just count triangles in G’.
● Three types of new triangles: triangles with 1 new

edge (), triangles with 2 new edges (),
triangles with 3 new edges ().

●

Dynamic Triangle Counting
● Main challenge is possible new triangles from new and

old edges.
● Otherwise would just count triangles in G’.
● Three types of new triangles: triangles with 1 new

edge (), triangles with 2 new edges (),
triangles with 3 new edges ().

●

Dynamic Triangle Counting
●

●

●

Dynamic Triangle Counting
●

●

●

Dynamic Triangle Counting

Dynamic Triangle Counting
● Deletion simpler - no overcounting, so no

inclusion/exclusion.

●

Dynamic Triangle Counting
● Complexity analysis:

● Deletion similar.
● Additional optimizations possible, e.g. vertex ordering based

on work by Shun & Tangwongsan. Significantly reduces
overcounting.

Performance Analysis
● Real-world graphs used.

Performance Analysis

Performance Analysis

Conclusion
● Proposed algorithm 100X-819X faster than previous

approaches.
● Paper style very straightforward and easy to follow.
● More comparisons to other algorithms might have been

more helpful.

