Exact and Parallel Triangle Counting
in Dynamic Graphs

Authors: Devavret Makkar, David A. Bader, Oded Green
Slides by: Obada Alkhatib

Triangle Counting Problem

e Given graph G(V, E) with n nodes and m edges, count
vertex triplets (u, v, t) s.t. (u, v), (v, t), (u, t) € E.
e 1 permutation of each triplet counted.

Triangle Counting Problem

e Given graph G(V, E) with n nodes and m edges, count
vertex triplets (u, v, t) s.t. (u, v), (v, t), (u, t) € E.
e 1 permutation of each triplet counted.
)

s N\
AN P
2 |~

2

o

Graph with 2 triangles

Applications

e Clustering coefficient analytic.
e Pattern matching in social networks.

Static Triangle Counting Approaches

e Linear algebra approach involving matrix multiplication -
O(n°) time, € < 2.376
e Adjacency list intersection, complexity < O(m X dmam)

where d,,,, - is the maximum node degree in G.

Static Triangle Counting Approaches

e Linear algebra approach involving matrix multiplication -
O(n°) time, € < 2.376
e Adjacency list intersection, complexity < O(m X dmam)

where d,,,, - is the maximum node degree in G.

Triangle Counting: Dynamic Graphs

e Could count all triangles from scratch after each batch
update - very expensive.

e Update triangles of affected vertex due to edge
insertion/deletion - still quite expensive.

Triangle Counting: Dynamic Graphs

e Could count all triangles from scratch after each batch
update - very expensive.

e Update triangles of affected vertex due to edge
insertion/deletion - still quite expensive.

e |dea: update triangle count for affected edge instead -
asymptotically less expensive.

Used Framework/Data Structure

e STINGER uses blocked linked lists to store edges. This
leads to a compromise between low space usage and high
data locality.

e However, no efficient way for list intersection or sorting.

Used Framework/Data Structure

e STINGER uses blocked linked lists to store edges. This
leads to a compromise between low space usage and high
data locality.

e However, no efficient way for list intersection or sorting.

e CUuSTINGER uses dynamic arrays as adjacency lists. Better
locality and suitable for sorting/merging.

Dynamic Graph Updates

e Handle insertions and deletions separately.

e Make temporary update-graph G’ = (V, E’), where E’ is
the set of next batch update edges.

e After G'is constructed, sort each adjacency list -
which is a dynamic array in cuSTINGER.

e Use fastest possible sorting algorithm (radix sort in the
paper, O(|E])).

Dynamic Graph Updates

e To get output graph, merge corresponding sorted
adjacency lists - which cuSTINGER allows efficiently.

e Costis
Y oW +4dS)

(u,v)EE’

Dynamic Graph Updates

e To get output graph, merge corresponding sorted
adjacency lists - which cuSTINGER allows efficiently.

e Costis
Y oS +4dS)

(u,v)EE’

e Sometimes, cuSTINGER allows in-place merging.

Dynamic Graph Updates

e To get output graph, merge corresponding sorted
adjacency lists - which cuSTINGER allows efficiently.

e Costis ,
Y oS +dY)
(u,v)EE’
e Sometimes, cuSTINGER allows in-place merging.

/_H

used‘ alloc used alloc

Before insertion After insertion
(a)

Dynamic Graph Updates

e Similar steps for graph deletions, but separate.
e Same overall cost due to use of dynamic arrays:

Y owdg +dS)

(u,v)EE’

Dynamic Graph Updates

e Similar steps for graph deletions, but separate.
e Same overall cost due to use of dynamic arrays:

(u,v)EE’
ds'
S v 1 3|45 7
dg 2 6
A N\ used alloc
1/2|3|a|s5|6|7| H \ f
[l ke IS
1 t 1 | Byl I
used alloe .]

dtr

Before deletion (b) After deletion

Dynamic Triangle Counting

e Main challenge is possible new triangles from new and
old edges.

e Otherwise would just count triangles in G'.

e Three types of new triangles: triangles with 1 new
edge (Az), triangles with 2 new edges (A
triangles W|th 3 new edges (AZ

Dynamic Triangle Counting

Main challenge is possible new triangles from new and
old edges.

Otherwise would just count triangles in G'.

Three types of new triangles: triangles with 1 new
edge (Az), triangles with 2 new edges (A

triangles W|th 3 new edges (AZ

NewTriangles = |A%] + |AL| + |A%]

Dynamic Triangle Counting

Main challenge is possible new triangles from new and

old edges.

Otherwise would just count triangles in G'.

Three types of new triangles: triangles with 1 new

edge (AZ), triangles with 2 new edges (A ®

triangles With 3 new edges (AZ <]

1) |
NewTriangles = |A%] + |AL| + |A%] @/;/@
5

Dynamic Triangle Counting

® 81 = adj(u,é\]) N adj(v,é\])
S1=2-|A1| +4-|A5| +6-|Aj]

* 5.5 =adi(u,Gr)Nadj(v,G)
S5 =) |sea| =2-|A4] +6-|Aj]

ec k'’

¢ Si=6-|Aj)

Dynamic Triangle Counting

® 81 = adj(u,(/}’\j) N adj(v,é\])
S1=2-|A[+4-]|A% +6-|Az]

. sez—ad]uGI)ﬂad](v &)
=) se2] =2-|AY +6-|AY

ec k'’

¢ Si=6-|A

Dynamic Triangle Counting

NewTriangles = |AY| + |AY| + |AY] =

Dynamic Triangle Counting

e Deletion simpler - no overcounting, so no
inclusion/exclusion.

S¢=2.|A¢
53 =2.|AS
95 =2-|Ag

. 1
ATl + [A%] + [A5] = (ST + S5 + S3)

Dynamic Triangle Counting

e Complexity analysis:

O(|El‘ ' (dé\l T d(r/;r;,aac)) == O(‘E,‘) d?f?&l’)

max

e Deletion similar.
e Additional optimizations possible, e.g. vertex ordering based
on work by Shun & Tangwongsan. Significantly reduces

overcounting.

Performance Analysis

e Real-world graphs used.

Name Network [V| |E| Ref. Static Insertion (sec) Deletion (sec)

Type (sec.) 100k | IM | 10M 100k | IM | 10M
coPapersDBLP Social 540k 30M [3] 1.032 0.053 0.452 - 0.025 0.098 -
in-2004 Webcrawl 1.38M 27TM [3] 18.176 0.213 2.208 - | 0.117 1.805 -
com-orkut Social 3M | 234M [25] 90.164 0.242 1.107 10.440 | 0.218 | 0.807 | 8.451
com-LiveJournal Social M 6OM [25] 8.975 0.168 0.765 - 0.067 0.191 -
cagel5 Matrix 5.15M 94M [3] 1.638 0.132 0.651 - | 0.043 | 0.091 -
nlpkkt160 Matrix 83M | 221M [3] 1.778 0.192 0.329 7.537 | 0.089 | 0.156 | 0.332
road_central Road 14M 33M [3] 1.348 0.288 0.348 - | 0.029 | 0.057 -
nlpkkt200 Matrix 16.2M | 432M [3] 3.460 0.910 1.081 2016 | 0.164 | 0.238 | 0.732
uk-2002 Webcrawl 18.52M | 523M [3] 522.586 1.653 10.875 12416 | 0.629 1.170 | 5.981
road_usa Road 24M 58M [3] 2.188 0.480 0.550 - 0.046 0.074 -

Performance Analysis

100.0%+

(23s) awiy a3epdn |ejo]

TR
L
=
=]
e |
=]
k|
I
L. |
I
|
.- |
o
I
e |
]
A
— -
T
[—]
= e
[E—]
H
[|

X XXX R R

S) o o o o)

o o o o o o

S ©® © ¥ «

(]

Wi} uolINJaXa Jo abejuadiad

-_— ExecutionJ

mm G' creation

mm Deletion

= G'creation mem ExecutionJ

mm [nsertion

(b) Deletions

(a) Insertions

Performance Analysis

103 -

v e o
~——— T e
= e N
10? y . / - = &
o 3 P — \
> o V4 /.' \
) :///
100 2 /
—
; -
100 ,_' . ' , |
~ Q Q Q Q Q Q
S 9 S S S S
~N S S S
~ S S
¥ 8

@@ uk-2002(insertion)
@@ uk-2002(deletion)

Vv com-orkut(insertion)
vV com-orkut(deletion)

Conclusion

e Proposed algorithm 100X-819X faster than previous
approaches.

e Paper style very straightforward and easy to follow.

e More comparisons to other algorithms might have been
more helpful.

