
GraphOne: A Data Store for 
Real-time Analytics on Evolving Graphs 
(FAST ‘19)
By Pradeep Kumar, H. Howie Huang
Presented by Anton Cao



Motivation
● Often need to compute both batching and streaming analytics on 

evolving graphs
● Prior graph stores could not efficiently provide both types of analytics 

with high ingestion
● Using multiple data stores requires data to be duplicated





Graph storage formats
● Edge list

○ Pros: fast ingestion and good temporal locality
○ Cons: bad spatial locality (edges of vertex not located together)

● Compressed sparse row (CSR)
○ Pros: good spatial locality 
○ Cons: expensive to insert edges

● Adjacency list
○ Pros: fast ingestion, good spatial locality
○ Cons: bad temporal locality



Hybrid Store
● Combine edge list and adjacency list for good spatial and temporal 

locality
● Also provides coarse and fine grained snapshotting





Versioning
● Adjacency list provides coarse grained snapshotting with epoch 

number
○ Adjacency list is append only

● If application desires fine grained snapshotting, can select specific edge 
within an epoch



Data Management
1. Logging: appends updates to edge log
2. Archiving: moves updates to adjacency list
3. Storing: stores data on non-volatile storage
4. Compaction



Data Management - Logging
● Appends updates to edge log
● Addition/deletion stored in MSB of source
● Log rewind parity stored in MSB of destination to guarantee atomicity
● Begin archiving and storing to durable storage when number of 

non-archived edges exceeds threshold



Data Management - 
Archiving
● Move non-archived edges (epoch) to adjacency list
● Shard edges into buffers by source vertex in parallel

○ Preserves ordering using two scans

● Non-atomic archive of independent shards
○ Greedily assign shards to workers to balance the workload

● Once complete, create edge block in adjacency list, and nodes in degree 
array and global snapshot list



Data Management - Storing
● Write edge log data to disk
● May be fetched if non-archived edges get overwritten
● Optionally checkpoint adjacency list data



Data Management - Compaction
● Remove deleted data from adjacency list and combine edge blocks
● Maintain reference count of number of views that are using each 

snapshot version
● Can compact data up to last retired snapshot (reference count of 0) and 

update degree array



Memory
● Adjacency list is biggest overhead (excessive chaining of edge blocks, 

each needs to store size and pointer to next block)
● Optimizations:



Cache line Memory optimization
● Allocate edge blocks in multiples of cache line (64 bytes) instead of 

dynamically based on edges in epoch
● 10x reduction in chain length and 3x reduction in memory consumption



Hub Vertex optimization
● Some vertices have very large degrees
● Allocate page-aligned (4KB) instead of cache-aligned (64B) edge blocks 

for vertices that exceed a threshold of neighbors
● Greatly reduces max chain length, little effect on memory footprint



GraphViews
● Interface that GraphOne provides to analytics applications
● Supports multiple views on the same data store with little overhead (no 

data duplication)
● Static View for batch queries
● Stream View for stream processing



Static View
● get-nebrs needs to add non-archived edges to adjacency list
● simple=True creates in memory copy adjacency list of non-archived 

edges, speeds up get-nebrs
● private=True creates local copies of non-archived edges and degree 

array, does not interfere with archiving/storage, useful for long-running 
analytics

● stale=True ignores non-archived edges



Stream 
View
● window-sz: size of data store that should be available (defaults to 

beginning of stream)?
● batch-sz: number of new updates before next iteration triggered

○ update-stream-view blocks



Stateful Stream



Evaluation
● 16K loc (C++)
● Evaluate on data ingestion, BFS, PageRank, and 1-Hop query (access 

edges of random vertices)
● Real-world and synthetic graphs





Vs LLAMA (snapshot based)



Vs Stinger (fine grained updates)



Vs SQLite, Neo4j (databases)



Vs Kickstarter (streaming)
Kickstarter was too slow at updating the adjacency store (2000x)



Parallel archiving and streaming



Support for concurrent streaming 



Effects of optimizations



Scalability



Summary
● GraphOne abstracts data store away from analytics
● Novel hybrid data store allows efficient batch and stream queries
● At least 3x speedup compared with existing frameworks like LLAMA 

and Stinger
● Well organized paper, extensive evaluation



Discussion
● Can the idea of a hybrid data store be applied in other domains?
● Is the 2000x result against Kickstarter reasonable?
● It seems the archive step uses a thread aware work balancing scheme, 

would it be possible/helpful to use a thread agnostic framework like 
Cilk?

● How was GraphOne received, and is it the current state-of-the-art?


