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Goals: Serializability for updates/queries,
achieve low latency and high throughput



Example: Fraud Detection

- Bank maintains a transaction graph
- Transactions occur at a high rate (1k-10k/sec)

- Goal: quickly detect anomalies in evolving transaction
graph



Relaxing Serializability

- Could detect a cycle that never existed!

A= <

Evolving graph Observed graph
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Existing Work

- Single Version Systems
- Maintain a single version of the graph

- Common approach in graph streaming (e.g., STINGER,
cuSTINGER, and KickStarter)

- Need to separate queries from updates for serializability

- Multi-Version Systems

- Support multiple graph snapshots (e.g., LLAMA, Kineograph,
GraphOne, and some graph databases)

- Snapshots are not space-efficient and lead to high latency

- Our framework Aspen uses lightweight snapshots to
enable low-latency concurrent queries and updates
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Terminology: Streaming vs. Dynamic

- Streaming graph processing: Goal is to run algorithms
on a graph that is changing in real-time while obtaining
serializable results
- Need to process updates concurrently with algorithm execution

- Dynamic graph algorithms: Goal is to update the result of
an algorithm based on updates to the graph itself

- Should be more efficient than recomputing answer from scratch

- Allows for barriers between algorithm execution and processing
updates

- This talk is about streaming graph processing



Graphs Using Purely Functional Trees

- Purely functional trees can be updated efficiently
(in logarithmic time/space) while retaining old copy of tree

- Aspen uses tree of vertices, where each vertex stores a
tree of its incident edges

. = vertex
A= edge tree




Updates via Path Copying
- Easy to generate new versions via path copying
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Updates via Path Copying
- Easy to generate new versions via path copying
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- We can obtain immutability versions of the tree



Immutability Enables Concurrency

Latest version
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Immutability Enables Concurrency
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Immutability Enables Concurrency
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Latest version

%@ #refs=1 \

e

#refs=1




17

Immutability Enables Concurrency
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Immutability Enables Concurrency

Latest version
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Immutability Enables Concurrency

Garbage collect all tree nodes whose
reference count is decremented to O
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Disadvantages of representing

graphs using trees

- Poor Cache Usage
- One tree node per vertex and edge
- One cache miss per edge access in the worst case

- Space Inefficiency
- Need to store children pointers and metadata on tree nodes
- Lose ability to perform integer compression

Requires close to 7TB of memory to store the
symmetrized Hyperlink 2012 graph (225B edges)!
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Space Overhead of Graphs using Trees
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Space Overhead of Graphs using Trees
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C-tree

- Purely functional compressed tree data structure
- Chunking parameter = B. Fix a hash function h.
- Select elements as heads with probability 1/B using h.

. = heads

Further improve space usage
for integer C-trees by
difference encoding chunks

28 29 32 40

prefix tree

Tree C-tree

- Supports parallel bulk insertions and deletions efficiently
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Space Usage of Graphs using C-trees

Space used (Gb)
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Space Usage of Graphs using C-trees
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Aspen Framework

- Extension of Ligra with primitives for updating graphs
- Supports single-writer multi-reader concurrency

Aspen versioned graph

acquire()
multi_insert(Ey), multi_delete(Ey)

Bucketing

Vertex Subsets

Graphs




Concurrent Queries and Updates

- [2-core hyper-threaded machine with 1TB RAM

- 1 hyper-thread updating graph while remaining hyper-
threads running parallel BFS
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Parallel Batch Updates
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- Aspen processes the Hyperlink 2012 graph at over 100M
edge updates per second

- About 1.4x faster than GraphOne (developed concurrently
and independently) based on a rough comparison
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Conclusion

- Aspen: a framework for streaming graph processing using
purely functional trees
- Code online: https://github.com/Idhulipala/aspen/

- Current bounds for C-tree are randomized
- Ongoing work on designing a deterministic version

- Aspen for external memory or other settings

- Lots of papers on individual dynamic graph algorithms
(mostly sequential, a few parallel)
- Ongoing work: parallel dynamic graph algorithms
- Open question: design a high-level parallel programming framework

- Bigger open question: design a framework for dynamic graph
algorithms in the streaming setting


https://github.com/ldhulipala/aspen/

