Low-Latency Graph Streaming
Using Compressed
Purely-Functional Trees

Laxman Dhulipala, Guy Blelloch, and Julian Shun

PLDI 2019

insert(e4)

delete(es)
insert(e2)

insert(e1)

Update Stream

Streaming Graph Processing

| ClusteringCoefficient(v) |

| Connectivity(G) |

IReachable(u—>v)? |
Query Stream

Goals: Serializability for updates/queries,
achieve low latency and high throughput

Example: Fraud Detection

- Bank maintains a transaction graph
- Transactions occur at a high rate (1k-10k/sec)

- Goal: quickly detect anomalies in evolving transaction
graph

Relaxing Serializability

- Could detect a cycle that never existed!

A= <

Evolving graph Observed graph

I R
Existing Work

- Single Version Systems
- Maintain a single version of the graph

- Common approach in graph streaming (e.g., STINGER,
cuSTINGER, and KickStarter)

- Need to separate queries from updates for serializability

- Multi-Version Systems

- Support multiple graph snapshots (e.g., LLAMA, Kineograph,
GraphOne, and some graph databases)

- Snapshots are not space-efficient and lead to high latency

- Our framework Aspen uses lightweight snapshots to
enable low-latency concurrent queries and updates

L R
Terminology: Streaming vs. Dynamic

- Streaming graph processing: Goal is to run algorithms
on a graph that is changing in real-time while obtaining
serializable results
- Need to process updates concurrently with algorithm execution

- Dynamic graph algorithms: Goal is to update the result of
an algorithm based on updates to the graph itself

- Should be more efficient than recomputing answer from scratch

- Allows for barriers between algorithm execution and processing
updates

- This talk is about streaming graph processing

Graphs Using Purely Functional Trees

- Purely functional trees can be updated efficiently
(in logarithmic time/space) while retaining old copy of tree

- Aspen uses tree of vertices, where each vertex stores a
tree of its incident edges

. = vertex
A= edge tree

Updates via Path Copying
- Easy to generate new versions via path copying

Insert(12)

Updates via Path Copying
- Easy to generate new versions via path copying

Insert(12)

Updates via Path Copying
- Easy to generate new versions via path copying

Insert(12)

Updates via Path Copying
- Easy to generate new versions via path copying

Insert(12)

- We can obtain immutability versions of the tree

Immutability Enables Concurrency

Latest version

w

refs=1

Immutability Enables Concurrency

%% Latest version

e

refs=1

Immutability Enables Concurrency

Latest version

B

Immutability Enables Concurrency

Latest version
S

A\

Immutability Enables Concurrency

Latest version

%@ #refs=1 \

e

#refs=1

17

Immutability Enables Concurrency

Latest version .
%% #refs=1 \

S

#refs=1

Immutability Enables Concurrency

Latest version

%@ frefs= \’

#refs=2

Immutability Enables Concurrency

Garbage collect all tree nodes whose
reference count is decremented to O

Latest version

~2

#refs=0
S

4

. S
Disadvantages of representing

graphs using trees

- Poor Cache Usage
- One tree node per vertex and edge
- One cache miss per edge access in the worst case

- Space Inefficiency
- Need to store children pointers and metadata on tree nodes
- Lose ability to perform integer compression

Requires close to 7TB of memory to store the
symmetrized Hyperlink 2012 graph (225B edges)!

.
Space Overhead of Graphs using Trees

Space used (Gb)

351Gb
HL2012
HL2014

ClueWeb

Twitter
Ligra+: state-of-the-art static

compressed graph
representation supporting
efficient parallel operations

—&— Ligra+

Livedournal

108 10° 10%° 10! 102

Number of edges

Space Overhead of Graphs using Trees

Space used (Gb)

104

10°

102

10t

10°

10!

- 6.8Tb
- ’.
y 2
JPhed 19.6x
: -7 351Gb
-7 HL2012
E o HL2014
ClueWeb
i LivedJournal
-® - Graphs using trees —¢— Ligra+
L | ! coon ey ! oo rrr ! e ' L |
10’ 108 10° 10%° 10! 10%?

Number of edges

C-tree

- Purely functional compressed tree data structure
- Chunking parameter = B. Fix a hash function h.
- Select elements as heads with probability 1/B using h.

. = heads

Further improve space usage
for integer C-trees by
difference encoding chunks

28 29 32 40

prefix tree

Tree C-tree

- Supports parallel bulk insertions and deletions efficiently

. S
Space Usage of Graphs using C-trees

Space used (Gb)

10*

10°

10°

10!

. 6.8Tb
’ -
. g
.- 351Gb
-7 HL2012
E HL2014
E Vg g
Twitter

i LivedJournal

-® - Graphs using trees —¢— Ligra+

B | ! R | ! L | ' | ' oo

10’ 108 10° 10%° 10! 1012

Number of edges

Space Usage of Graphs using C-trees

10* - , 6:8Tb
] ’ -
1 N I 9x better
10° - -7 Y 701Gb
. : - 351Gb
8 107 | HL2012
S
()
S Al
o 107 3
|]
((v]
Q. i
10! - LivedJournal
-® - Graphs using trees —¢— Ligra+
] -® - Aspen
10-2 ! L | ! L | ! L | ' L | ' oo
10’ 10° 10° 10%° 10" 10"

Number of edges

%
Aspen Framework

- Extension of Ligra with primitives for updating graphs
- Supports single-writer multi-reader concurrency

Aspen versioned graph

acquire()
multi_insert(Ey), multi_delete(Ey)

Bucketing

Vertex Subsets

Graphs

Concurrent Queries and Updates

- [2-core hyper-threaded machine with 1TB RAM

- 1 hyper-thread updating graph while remaining hyper-
threads running parallel BFS

10° -

| —e— Latency (Concurrent) -4 - Latency (Isolated)
10}
z
E’ 10° 4
>
g .
S Less than 3% impact on
| queries in concurrent setting
102

! L ! o ! L ! L
10’ 108 10° 10%° 10! 10%?
Number of edges

Parallel Batch Updates

10° 4 o
1 ’*,’
§107 | ’__—0”
ST a7 329x better
o] “¢’
= 10° - .-~ 32x better
°© : ng —o o o—0
4
2 10° -
< L
m u
8 i
4
= 107 -
—]
10°
) -& - Aspen Batch Updates = —e— STINGER Batch Updates
102 — T - T r - 1 ‘1 T - r° " r - T r 1
10° 10 10° 10® 10* 10> 10° 10" 10® 10°

Batch Size

- Aspen processes the Hyperlink 2012 graph at over 100M
edge updates per second

- About 1.4x faster than GraphOne (developed concurrently
and independently) based on a rough comparison

. D
Conclusion

- Aspen: a framework for streaming graph processing using
purely functional trees
- Code online: https://github.com/Idhulipala/aspen/

- Current bounds for C-tree are randomized
- Ongoing work on designing a deterministic version

- Aspen for external memory or other settings

- Lots of papers on individual dynamic graph algorithms
(mostly sequential, a few parallel)
- Ongoing work: parallel dynamic graph algorithms
- Open question: design a high-level parallel programming framework

- Bigger open question: design a framework for dynamic graph
algorithms in the streaming setting

https://github.com/ldhulipala/aspen/

