EmptyHeaded: A Relational
Engine for Graph Processing

CHRISTOPHER R. ABERGER, ANDREW LAMB, SUSAN TU, ANDRES NOTZLI,
KUNLE OLUKOTUN, and CHRISTOPHER RE

PRESENTED BY SAl SAMEER PUSAPATY .

Goals at a High Level

e Low-level graph engines
o Fast performance (domain-spec primitives, optimized data layouts...)
o Require users to write non-trivial code
e High-level graph engines
o Slow performance
o Easy to write queries

e We want the best of both worlds

System Overview

Input Query Compiler Generated Code Execution Engine
Data Query i‘:)::x(;tri 1:: e [
R |[Ks(x,y,2) :- sy := (y R[x] N 1y R)
oj1|| Rkxy), foryin sy:
1{2|| R(y,2), sz := (m R[y] N m, R[x])
0|2 R(x,2). for zin s;:

K3 U (X, Y, Z)

~

Terminology

e SIMD - Single Instruction Multiple Data (hardware that can apply same op
on multiple data concurrently)

e GHD - Generalized Hypertree Decomposition

e Multiway Join - join multiple tables at same time

e Worst Case Optimal Join — optimal algorithm with worst case usage
(output size of join)

Preliminaries

Worst-Case Optimal Join

e Hypergraph H = (V,E)
o 'V =query attribute
o E =relation

e Join queries can be represented as hypergraphs

ALGORITHM 1: Generic Worst-Case Optimal Join Algorithm

1 //Input: Hypergraph H=(V,E), and a tuple t.
2 Generic—Join (V ,E,t):

3 if |[V]=1 then return NgcpRe[t].

4 Let I={v1} // the first attribute.

5 Q <0 // the return value

6 // Intersect all relations that contain vy
7 // Only those tuples that agree with t.
8 for every ty € NecEieso, T1(Re[t]) do

9 Q: « Generic—Join(V -1, E, tuty)

10 Q « QU ({ty} X Q¢

11 return Q

Feasible Cover/Bounding OUT Size

e AGM Paper creates a way to bound worst case size of join query

e Consider a hypergraph H(V,E), and vector x, which has a component for
each edge such that each component is >= 0

e Feasible cover if

for each v € V we have Z i 2 1.

ecE:e3v

e |If xis feasible, then

louT| < l—[|R:17¢

e€E

Using AGM bound

X=<1,1,0> X =<WWhV>

By AGM we get... By AGM we get...

O(N*N*1) = O(N~2) O(NA(3*.5)) = O(N*(3/2))

Turns out this is a tight
bound if we consider a
graph with sqgrt(N)
vertices

Input

Input Data Transformation

Original Relation Dictionary Encoding Trie Representation
Manages ID Map
= _ 3 195
managerlD employeelD employeeRating ID Key i e
10 543 17 0] 0 0 / '
20 10 3.8 » 20 | 1 >1 —=0 |38
10 300 9.5] = e \
40 20 6.4 30| 3 1 64
543 | 4

Query Language

e Aggregation (MIN, SUM, COUNT, matrix multiplication, etc...)

o Annotations on trie

Table 1. Example Graph Queries in EmptyHeaded

e Recursion r—

. Triangle Triangle(x,y,z):-R(x,y),S(y,z),T(x,z).

o [Easy syntax for QUENIES -> tm iimeius s Koo 80,5100 0000 000
Lollipop Lollipop(x,y,z,w):=R(x,y),S(y,z),T(x,z),U(x,w).
Barbell Barbell(x;¥sZaX " 5 ¥ %2 D) e=REK VDS W2 T(K52) U X X ")5

R'(x',y"),$"(y",2"),T"(x",2").

Count Triangle CntTriangle (;w:long):-R(x,y),S(x,z),T(x,z); w=<<COUNT(*)>>.

S4Clique(x,y,z,w):-R(x,y),S(y,2z),T(x,z),U(x,w),
V(y,w),Q(z,w),P(x, node").

Barbell-Selection ~ oBarbell(x,y,z,x",y',z"):-R(x,y),S(y,2),T(x,2),U(x, *node"),

V(S node! %", B0t sy a8 0y, 20 T 0 2")

4-Clique-Selection

N(w:int):-Edge(x,y); w=<<COUNT(x)>>.
PageRank (x;y:float):-Edge(x,z); y= 1/N.
PageRank (x;y:float)*[i=5]:-Edge(x,z),PageRank(z),InvDeg(z);
y=0.15+0.85%<<SUM(z)>>.
3SSP SSSP(x;y:int):-Edge(‘start',x); y=1.
SSSP(x;y:int)*:-Edge(w,x),SSSP(w); y=<<MIN(w)>>+1.

PageRank

Query Compiler

Generalized HyperTree Decompositions

e Previously relational algebra used to represent query plans

e We now have multi-joins
o Either extend relational algebra
o Use GHDs so optimizations can be applied

e “AGHD is a tree similar to the abstract syntax tree of a relational algebra
expression: nodes represent a join and projection operation, and edges
indicate data dependencies. A node v in a GHD captures which attributes
should be retained (projection with x (v)) and which relations should be
joined (with A(v))”

GHD Example

O(NA(3/2)+/0UT))
O(N*3) Vo
<V2,1/2,V2,0,V2,1/2,1/2> :
(% N\ A:U
X:x,x'

A:R,S,T,R',8',T’

X:xX,y,2,x",y",2'

o P

(a) Hypergraph (b) LogicBlox GHD (c) EmptyHeaded GHD

Pushing down Selections

e High selectivity operations should process ASAP
e Within a Node

o Rearrange attribute order for WCOJ algorithm RS YO .
o Potential for early termination e s

e Across Nodes
o Push low selectivity/low cardinality nodes down as far in GHD Vi

e 4 orders of magnitude improvement in runtime

Vi
X RS, U N0
XX, YrZ, W

X:x, node’

(a) GHD without pushing down (b) GHD with pushing down

Pushing Down Example

out(x,y,z,w) :- worksFor(x,‘'Univ@Dept@"'),
Q4 name (x,y),emailAddress(x,w), telephone(x,z),
type(x, ‘AssociateProfessor').

Pushing Down Example

High Selectlwty'

Code Generation

Generating Code

Operation Description
R[#] Returns the set
Trie (R) matching tuple t € R.
R BUTE 5 Appends elements in set xs
to tuple t € R.
for x in xs Iterates through the
Set (ixs) elements x of a set xs.
Returns the intersection
xsNys

of sets xs and ys.

Generating Code

e Convert GHD into optimized C++ code
e standard API for trie traversals and set intersections

e EmptyHeaded provides optimized iterator interface for trie
o Find which values match specific tuple predicate

e Within each node WCOJ algo is used as shown before

e Across Nodes

o First a bottom up pass to compute Q and pass it to parent
o Then top-down pass to build the result

e Recursion ends up just unrolling the join algorithm (GHD child points to
parent)

Reducing Redundant Work

Its possible to have two identical nodes

Two nodes are equivalent if

o They have same join patterns on same input

o Same aggregations, selections, and projections

o Result of each subtree is identical
e Extra work is removed during the bottom-up pass
o List of previously computed GHD nodes is maintained

e Top-down pass can also be removed sometimes (COUNT query)

Execution Engine

Getting SIMD parallelism

e Skews exist
o Density of data vals is not constant
o Cardinality of data vals is highly varied

e SIMD parallelism while dealing with these skews are achieved via data
layouts and intersection algorithms

Layouts

e uint - (32 bit) great for representing sparse data (bad for SIMD parallelism)

e Dbitset - (bit vector) great for dense data and SIMD parallelism

e pshort - groups vals with common upper 16 bit prefix together (stores
prefix once)

e varint - variable byte encoding for compression

e Bitpacked - partitions set into blocks and compresses each block

bitset

e Stores (offset, bit vector)
e (Offset stores index of smallest val in bit vector

e Offsets are packed contiguously (allowing for uint layout)
o Allows for easy intersection of offsets to find block match

Inlol‘... Onlbl |b_,,

e Exploits the fact that close by vals share common prefix
e Grouped by 16 bit prefix

0

15

S = {65536, 65636, 65736}

16

31

32 47

43 63

64 79

v1[31..16]

length

U1 [15..0]

v,[15..0]

v3[15..0]

3

0

100

200

varint

e Variable byte encoding
o Encode differences between data vals int bytes
o Lower 7 bits store the data, 8th but indicates extension or not
o If 8th bitis 0, output, otherwise append next byte

S=1{0,2,44 Diff ={0,22)

0 31 32 38 39 40 46 47 48 54 55
S| 5.06.0] | ¢ | 8,[6.0] | c | 65[6.0]
3 0 0 2 0 2 0

o

bitpacked

Partitions set into blocks

Blocks compressed

Minds maximum bits of entropy for block, b

Uses b bits to encode value

Past work shows that encoding and decoding values happen efficiently at
the granularity of SIMD registers

$=1{0,2,8}, Diff ={0,2,6}

0 31. 32 39 40 42 43 45 46 48
|S| bits/elem | §;[2..0] d2[2..0] d3[2..0]
3 3 0 2 6

Which layouts to use?

5 X1 uint Nuint [pshort Nbitset B bitset Nbitset
. Denslty Skew E= uint Nbitset [ZZ1 pshort Npshort
jnans
0.16384 15x
o Using uint and bitset layouts were enough 004096 P
o Varint and bitpacking are never the best ooy 18
. 0.01024 - 1.53x | 1.67x = 2x 5= 5x
P& 4
o Pshort offers marginal benefits vousral cre e = =
. m ey
o Real world data has large amt of density skew g ooose s = =
& 0.00128 S 1x R 1%
O — &
0.00032 | i} 100 1 1
0.00016 |- [0 1x KB 1x 3K 1x 4 1x
TR ZX ‘xi x’x‘ xxxx
8e-05|- xR 1x X 1x~x1x‘;‘"1x :
4e-05} *:x 1x <\1}>‘<“ ‘1‘)(1x ¢ 1.35x £ 2x = 3x 3= 5x =& 8x =F 20x J
K{v’“y "y)?‘ v‘xvy e S — T———
2e-05 ¢ 1x XX 1x)‘,.1)(: 1x KP4 1x 3 1.14x | 1.90x £ 3x = 4x T 6x I 10x £ 20x 3
n n w © o © © o < 0 ©0 <
T ¢ 3 2 22 835 8 ¢ g 3
“a ¥ ® 5 5 & S S & o o =
e o o o o o o 2 o
Density A

Fig. 7. Best performing layouts for set intersections with relative performance over uint.

Intersection Algorithms

e uintNuint-

(@)

SIMDShuffling basic block-wise equality checking using SIMD shuffles and comparisons
V1 iterates through smaller set one by one and checks in larger set

V3 same as V1 but binary search on 4 blocks of data (each in a SIMD register)

SIMD Galloping uses exponential search on larger set to find potential match, then normal
search

BMiss uses SIMD instructions to find partial matches then normal comps to check

e bitset N bitset -

O

Common blocks found by intersection of offsets-> SIMD AND to intersect matching blocks

e Others described in paper

How well do the Intersection Algorithms

work

e Cardinality Skew O
o SIMDGalloping and V3 algos do the best
o Especially when size diff of two sets is very large
o Use Shuffling until 1:32 threshold switch to Galloping

SIMDShuffling

- SIMDGalloping \ 148
L |

V1 V3

Execution Time [s]
=

10—6 1 1 1 111111.
10! 107
| S1]/]S2|

Node Orderings

e Maybe ordering of Nodes in Dictionary Encoding can make a big diff?
o Can affect cardinality/density skew of data

e Try a variety of orderings: (Random, BFS, Strong_Runs, Degree)

e Turns out not really:
o Effects of node ordering are mitigated by intersection and layout optimizations

Results

Experiment

e Dataset

o Low Density Skew - LiveJournal, Orkut, Patents
o Med Density Skew - Twitter, Higgs
o High Density Skew - Google+

e Low Lvl Engines Considered: PowerGraph, CGT-X, Snap-R
e High Lvl Engines Considered: LogicBlox, SocialLite

Results

Ran Triangle Counting

Table 9. Triangle Counting Runtime (in Seconds) for EmptyHeaded and Relative Slowdown for Other
Engines Including PowerGraph, a Commercial Graph Tool (CGT-X), Snap-Ringo, SocialLite, and LogicBlox

Low-Level High-Level
Dataset EmptyHeaded PowerGraph CGT-X Snap-Ringo SociaLite LogicBlox
Google+ 0.31 8.40% 62.19X 4.18% 1390.75% 83.74X
Higgs 0.15 3.25X 57.96X 5.84X 387.41X 29.13X
LiveJournal 0.48 5.17X 3.85X 10.72X 225.97X 23.53%
Orkut 2.36 2.94X = 4.09% 191.84X 19.24X
Patents 0.14 10.20% 7.45X 22.14X 49.12X 27.82X
Twitter 56.81 4.40X = 2.22X t/o 30.60%

48 threads used for all engines. “-” indicates the engine does not process over 70 million edges. “t/0” indicates the engine
ran for over 30 minutes.

Results

Ran with PageRank
Table 10. Runtime for Five Iterations of PageRank (in Seconds) Using 48 Threads for All Engines

Low-Level High-Level
Dataset EmptyHeaded Galois PowerGraph CGT-X Snap-Ringo SociaLite LogicBlox
Google+ 0.10 0.021 0.24 1.65 0.24 1.25 7.03
Higgs 0.08 0.049 0.5 2.24 0.32 1.78 7.72
LiveJournal 0.58 0.51 4.32 = 1.37 5.09 25.03
Orkut 0.65 0.59 4.48 = 1.15 17.52 75.11
Patents 0.41 0.78 3.12 4.45 1.06 10.42 17.86

Twitter 15.41 17.98 57.00 = 27.92 367.32 442.85

Results

Ran for Single Source Shortest Path

Table 11. SSSP Runtime (in Seconds) Using 48 Threads for All Engines

Low-Level High-Level
Dataset EmptyHeaded Galois PowerGraph CGT-X SociaLite LogicBlox
Google+ 0.024 0.008 0.22 0.51 0.27 41.81
Higgs 0.035 0.017 0.34 0.91 0.85 58.68
LiveJournal 0.19 0.062 1.80 e 3.40 102.83
Orkut 0.24 0.079 2.30 2 7.33 215.25
Patents 0.15 0.054 1.40 4.70 3.97 159.12

Twitter 1:01 2.52 36.90 . X 379.16

EHw/o Optimizations

Other Engines

Dataset Query EH -R -RA -GHD SocialLite = LogicBlox
K, 4.12 10.01X 10.01X - t/o t/o
Google+ L3 3,11 1.05% 1.10% 8.93% t/o t/o
Bs 4 3.17 1.05% 1.14% t/o t/o t/o
K, 0.66 3.10X 10.69% - 666X 50.88%
Higgs L 093 1.97X 7.78% 1.28x t/o t/o
Bs 1 0.95 2.53X 11.79% t/o t/o t/o
K4 2.40 36.94X 183.15X - t/o 141.13X%
LiveJournal Ls 1 1.64 45.30X 176.14X% 1.26X t/o t/o
Bs 1 1.67 88.03X 344.90X t/o t/o t/o
K4 7.65 8.09% 162.13X . t/o 49.76X
Orkut L3 8.79 2.52X 24.67X 1.09% t/o t/o
Bs 1 8.87 3.99X 47.81X t/o t/o t/o
K4 0.25 328.77X 1021.77X . 20.05X 21.77X
Patents L3 0.46 104.42X 575.83% 0.99X 318X 62.23X
Bs 4 0.48 200.72X 1105.73X t/o t/o t/o

Results

Dataset -SIMD -Representation = -SIMD & Representation
Google+ 1.0X 3.0% 7.5X
Higgs 1.5X 3.9% 4.8X
LiveJournal 1.6X 1.0x 1.6X
Orkut 1.8X 1.1X 2.0%
Patents 1.3X 0.9% 1.1X

“-SIMD” is EmptyHeaded without SIMD. “-Representation” is EmptyHeaded using uint at
the graph level.

Conclusion

First WCOJ processing engine that also...
o Can compete with low level engines
o Has simple high level querying

Use GHDs (10*3x improvement)
Use layouts to get SIMD parallelism
Outperform other popular engines by 4-60x

Extend to Resource Description Framework Engines
o More complex join queries
o Specialized
o (Subject, Object, Predicate) triples form massive graph

Table 17. Runtime in Milliseconds for Best Performing System and Relative Runtime for Each Engine
on the LUBM Benchmark with 133 Million Triples

Query Best EmptyHeaded TripleBit = RDF-3X MonetDB LogicBlox
Q1 4.00 1.51X 3.45X 1.00X 174.58X 8.62X
Q2 973.95 1.00X 2.38X 1.92X 8.79X 1.52X
Q3 0.47 1.00X 92.61X 8.44X 283.37X 83.41X
Q4 339 4.62X 1.00X LFTX 2093.78X 116.32X
Q5 0.44 1.00X 99.21X 9.15X 303.11X 81.44X
Q7 6.00 3.18X 8.53X 1.00X 573.33% 6.52X
Q8 78.50 9.83% 1.00X 3.07X 206.62X 5.03X
Q9 581.37 1.00X 3.53X 6.63X 24.29X 1.35X
Q11 0.45 1.00X 6.07X 11.03X 58.63X 73.76X
Q12 3.05 2.22X 1.00X 7.86X 118.94X 50.23X
Q13 0.87 1.00X 48.90X 35.49X 86.18X 102.77X
Q14 3.00 1.90X 54.47X 1.00X 313.47X 325.02%

Table 18. Relative Speedup of Each Optimization on Selected LUBM
Queries with 133 Million Triples

Query +Layout +Attribute +GHD +Pipelining

Q1 2.10X 129.85% -

Q2 8.22X 1.03X - -
Q4 2.02X 12.88% 69.94X -
Q7 4.35X 95.01X - -
Q8 2.24X 1.99X% 1.5X 4.67X
Q14 7.92X 234.49X - -

+Layout refers to EmptyHeaded when using multiple layouts versus solely
an unsigned integer array (index layout). +Attribute refers to reordering at-
tributes with selections within a GHD node. +GHD refers to pushing down se-
lections across GHD nodes in our query plan. +Pipelining refers to pipelining
intermediate results in a given query plan. “-” means the optimization has no
impact on the query.

Discussion Questions

e Have there been any advancements or competitors to EmptyHeaded in its
goal to balance low-level performance and high-level simplicity?

e What merits does extending relational algebra to multi-way joins have?

