
EmptyHeaded: A Relational
Engine for Graph Processing
CHRISTOPHER R. ABERGER, ANDREW LAMB, SUSAN TU, ANDRES NÖTZLI,
KUNLE OLUKOTUN, and CHRISTOPHER RÉ

PRESENTED BY SAI SAMEER PUSAPATY

Goals at a High Level

● Low-level graph engines
○ Fast performance (domain-spec primitives, optimized data layouts…)
○ Require users to write non-trivial code

● High-level graph engines
○ Slow performance
○ Easy to write queries

● We want the best of both worlds

System Overview

Terminology

● SIMD – Single Instruction Multiple Data (hardware that can apply same op
on multiple data concurrently)

● GHD – Generalized Hypertree Decomposition
● Multiway Join - join multiple tables at same time
● Worst Case Optimal Join – optimal algorithm with worst case usage

(output size of join)

Preliminaries

Worst-Case Optimal Join

● Hypergraph H = (V,E)
○ V = query attribute
○ E = relation

● Join queries can be represented as hypergraphs

Feasible Cover/Bounding OUT Size

● AGM Paper creates a way to bound worst case size of join query
● Consider a hypergraph H(V,E), and vector x, which has a component for

each edge such that each component is >= 0
● Feasible cover if

● If x is feasible, then

Using AGM bound

X Y

Z

X = <1,1,0>

By AGM we get...

O(N*N*1) = O(N^2)

X = <½,½,½>

By AGM we get...

O(N^(3*.5)) = O(N^(3/2))

Turns out this is a tight
bound if we consider a
graph with sqrt(N)
vertices

Input

Input Data Transformation

Query Language

● Aggregation (MIN, SUM, COUNT, matrix multiplication, etc…)
○ Annotations on trie

● Recursion
● Easy syntax for queries ->

Query Compiler

Generalized HyperTree Decompositions

● Previously relational algebra used to represent query plans
● We now have multi-joins

○ Either extend relational algebra
○ Use GHDs so optimizations can be applied

● “A GHD is a tree similar to the abstract syntax tree of a relational algebra
expression: nodes represent a join and projection operation, and edges
indicate data dependencies. A node v in a GHD captures which attributes
should be retained (projection with χ (v)) and which relations should be
joined (with λ(v))”

GHD Example

O(N^3)

O(N^(3/2)+|OUT|)

<½,½,½,0,½,½,½>

Pushing down Selections

● High selectivity operations should process ASAP
● Within a Node

○ Rearrange attribute order for WCOJ algorithm
○ Potential for early termination

● Across Nodes
○ Push low selectivity/low cardinality nodes down as far in GHD

● 4 orders of magnitude improvement in runtime

Pushing Down Example

Pushing Down Example

Code Generation

Generating Code

Generating Code

● Convert GHD into optimized C++ code
● standard API for trie traversals and set intersections
● EmptyHeaded provides optimized iterator interface for trie

○ Find which values match specific tuple predicate

● Within each node WCOJ algo is used as shown before
● Across Nodes

○ First a bottom up pass to compute Q and pass it to parent
○ Then top-down pass to build the result

● Recursion ends up just unrolling the join algorithm (GHD child points to
parent)

Reducing Redundant Work

● Its possible to have two identical nodes
● Two nodes are equivalent if

○ They have same join patterns on same input
○ Same aggregations, selections, and projections
○ Result of each subtree is identical

● Extra work is removed during the bottom-up pass
○ List of previously computed GHD nodes is maintained

● Top-down pass can also be removed sometimes (COUNT query)

Execution Engine

Getting SIMD parallelism

● Skews exist
○ Density of data vals is not constant
○ Cardinality of data vals is highly varied

● SIMD parallelism while dealing with these skews are achieved via data
layouts and intersection algorithms

Layouts

● uint - (32 bit) great for representing sparse data (bad for SIMD parallelism)
● bitset - (bit vector) great for dense data and SIMD parallelism
● pshort - groups vals with common upper 16 bit prefix together (stores

prefix once)
● varint - variable byte encoding for compression
● Bitpacked - partitions set into blocks and compresses each block

bitset

● Stores (offset, bit vector)
● Offset stores index of smallest val in bit vector
● Offsets are packed contiguously (allowing for uint layout)

○ Allows for easy intersection of offsets to find block match

pshort

● Exploits the fact that close by vals share common prefix
● Grouped by 16 bit prefix

varint

● Variable byte encoding
○ Encode differences between data vals int bytes
○ Lower 7 bits store the data, 8th but indicates extension or not
○ If 8th bit is 0, output, otherwise append next byte

bitpacked

● Partitions set into blocks
● Blocks compressed
● Minds maximum bits of entropy for block, b
● Uses b bits to encode value
● Past work shows that encoding and decoding values happen efficiently at

the granularity of SIMD registers

Which layouts to use?

● Density Skew
○ Using uint and bitset layouts were enough
○ Varint and bitpacking are never the best
○ Pshort offers marginal benefits
○ Real world data has large amt of density skew

Intersection Algorithms

● uint ∩ uint -
○ SIMDShuffling basic block-wise equality checking using SIMD shuffles and comparisons
○ V1 iterates through smaller set one by one and checks in larger set
○ V3 same as V1 but binary search on 4 blocks of data (each in a SIMD register)
○ SIMD Galloping uses exponential search on larger set to find potential match, then normal

search
○ BMiss uses SIMD instructions to find partial matches then normal comps to check

● bitset ∩ bitset -
○ Common blocks found by intersection of offsets-> SIMD AND to intersect matching blocks

● Others described in paper

How well do the Intersection Algorithms
work

● Cardinality Skew
○ SIMDGalloping and V3 algos do the best
○ Especially when size diff of two sets is very large
○ Use Shuffling until 1:32 threshold switch to Galloping

Node Orderings

● Maybe ordering of Nodes in Dictionary Encoding can make a big diff?
○ Can affect cardinality/density skew of data

● Try a variety of orderings: (Random, BFS, Strong_Runs, Degree)
● Turns out not really:

○ Effects of node ordering are mitigated by intersection and layout optimizations

Results

Experiment

● Dataset
○ Low Density Skew - LiveJournal, Orkut, Patents
○ Med Density Skew - Twitter, Higgs
○ High Density Skew - Google+

● Low Lvl Engines Considered: PowerGraph, CGT-X, Snap-R
● High Lvl Engines Considered: LogicBlox, SocialLite

Results

Ran Triangle Counting

Results

Ran with PageRank

Results

Ran for Single Source Shortest Path

Results

Conclusion

● First WCOJ processing engine that also...
○ Can compete with low level engines
○ Has simple high level querying

● Use GHDs (10^3x improvement)
● Use layouts to get SIMD parallelism
● Outperform other popular engines by 4-60x
● Extend to Resource Description Framework Engines

○ More complex join queries
○ Specialized
○ (Subject, Object, Predicate) triples form massive graph

Discussion Questions

● Have there been any advancements or competitors to EmptyHeaded in its
goal to balance low-level performance and high-level simplicity?

● What merits does extending relational algebra to multi-way joins have?

