
AutoMine: Harmonizing High-Level Abstraction
and High Performance for Graph Mining

Daniel Mawhirter, Bo Wu

Presentation by: Abdullah Alomar

Outline

1. Introduction & Motivation

2. Overview of AutoMine

3. Key Features

4. Evaluation

5. Conclusions and Discussion

1

Introduction & Motivation

Introduction: State of current work

• Recently there have been many scalable frameworks designed
for graph processing (e.g. Pregel). Most of these systems
propose and follow certain programming paradigm (e.g. TLV) to
implement graph computation algorithms (e.g. BFS, Page Rank).

• These frameworks are unable to handle more complicated
workflows, namely graph mining workflows, as they involve
much more complex algorithms and generate huge amounts of
intermediate data. while the systems mentioned above can only
maintain states of vertices/edges

• To overcome this, some frameworks has proposed maintaining
the states of sub-graph embeddings such as Arabesque and
RStream. The performance of these systems however is lacking
performance is lacking.

2

How current systems perform?

In line with the previously presented paper, the authors compare the
performance of RStream with a single threaded implementations.
They find the single-threaded implementation outperforms RStream
up to 5.7X speedup.

A natural question that arises is: why such degradation in
performance happens?

3

How current systems perform?

A natural question that arises is: why such degradation in
performance happens?

Two Reasons:

1-Existing graph mining systems implement generic but
low-efficiency mining algorithms.

In essence they sacrifice performance for high-level abstraction. e.g.,
triangle counting in Rstream takes O(|V|∆2), which is higher than the
simple counting algorithm (O(|E|∆)).

4

How current systems perform?

Two Reasons:

2-Existing graph mining systems have high memory consumption
Again, in triangle counting RStream needs to generate all the wedge
embeddings before generating triangle embeddings.

The Figure illustrates a possible solution to minimize memory
consumption. To enumerate the triangle embedding (a, b, c), one
needs only generate the wedge embedding (a, b, c) it depends on,
instead of all the wedge embeddings. 5

Overview of AutoMine

AutoMine Objective

The goal of AutoMine is: bridge the gap between high-level
abstraction and high performance.

Two challenges to achieve that:

1- How to automatically select an efficient algorithm from many
possible algorithms to mine a particular pattern.

2- How to minimize memory consumption, and avoid the pitfall of
other systems.

6

AutoMine Objective

For that, AutoMine come up with Three novel Ideas:

1- Vertex composition set: which save space and build a foundation
of code generation.

2- Schedule generator, which transform the mining problem into a
graph tournament problem.

3- Merging algorithm for counting multiple different patterns.

7

AutoMine architecture

Workflow: The workflow of the AutoMine system has the following
phases:

(i) Compilation Phase. The compilation phase takes a high-level API
and generates an optimized graph mining program.

(ii) Execution Phase. the mining program processes input graphs and
returns the final results.

8

AutoMine architecture

(i) Compilation Phase.

The compilation phase takes a high-level API and generates an
optimized graph mining program by invoking three components:
(1) Pattern Enumerator: Which transform the pattern semantics into an enumeration
of all non-isomorphic subgraph patterns.

(2) Schedule generator: which select an optimal schedule (i.e., algorithm) to identify
each of the subgraph patterns.

(3)Code generator: which considers data reuse in the generated schedules and
produces the final mining program in C++.

9

AutoMine architecture

APIs:AutoMine does not require the user to understand the mining
algorithms or optimization details, but presents high-level APIs.

1 - definePattern: function defines a pattern with a list of 2-tuples,
each representing an undirected edge. e.g., define a triangle pattern,
by Pattern p = definePattern([(a,b), (b, c),
(c,a)]).
2- countPatterns and enumeratePatterns to generate programs to
respectively count and enumerate the embeddings of the given list
of subgraph patterns.

10

Summary of Results

In this paper, the authors empirically evaluate AutoMine and find
that it indeed provides a system with high-level abstraction and
superior performance. In particular AutoMine:

1- Outperforms Arabesque and RStream by orders of magnitude.

2- Even outperform the approximate system ASAP, a state-of-the-art
approximate graph mining system, by up to 68.8X for size-3 motif
counting

11

Key Features

Set-Based Representation

In the above algorithm, we keep all the intermediate embeddings,
whereas in the the simple triangle counting algorithm allow for
discarding the wedge embedding aǒter all the more complex
embeddings (i.e. triangles) are already discovered.

The authors suggest Set-Based representation to for any arbitrate
pattern

12

Set-Based Representation

• Consider a connected pattern Pk on k : k > 2 vertices, and a
sub-pattern Pk−1. (e.g.P3 can be a triangle)

• An instance of Pk is an embedded sub-graph denoted as EPk

and composed of vertices (v0, ..., vk1) (e.g. EP3 = (a,b, c)).
• Let the function Fk(EPk−1) be a function that return a set Vk of
all the vertices vk that extend an embedding EPk−1 into an EPk .

• The function Fk must only apply set operations on the neighbor
sets of EPk−1 vertices.

Lemma 1: Fk can discover Vk by using only set intersection and
subtraction.

13

Set-Based Representation

Lemma 1: Fk can discover Vk by using only set intersection and
subtraction.

Proof. 1- In order to construct Fk , consider a vertex vk which can
form an embedding EPk with the vertices from EPk−1

2-We partition v0, ..., vk1 into two sets VT and VF. VT contains all the
vertices that are neighbors of vk in Pk and VF includes the remaining
vertices

3-We therefore construct Fk as follows:

Vk = Fk(EPk−1) =
∩
v∈VT

N (v)−
∪
v∈VF

N (v)

The proof introduces an algorithm to discover embeddings of a more
complex pattern Pk based on any embedding of Pk−1. The base
pattern P1 is a vertex, with P2 being an edge. Thus the pattern is
encoded by the sequence F1, ...,Fk.

14

Schedule generation:modeling

The series of function described above encodes the relationships
among the vertices of a pattern. these functions F1, ...,Fk must be
applied in order when computing patterns to respect their
dependencies. There can be, however, many possible series’ of
functions for the same pattern.

15

Schedule generation:modeling

Given a pattern, we:

1- build a colored complete graph by coloring all present edges
black and all absent edges red; 2- we assign an order to add
vertices; 3- We assign directions to the edges.

16

Schedule generation:modeling

Lemma 2. A tournament must be acyclic for its corresponding
schedule to exist.

Corollary 3. an acyclic tournament gives the vertices a total order,
which is the necessary condition for a schedule to exist.

In a k-vertex complete graph, there are k! unique orderings of the
vertices, and therefore k! possible acyclic tournaments. Due to the
colored edges, some of these orderings are nonisomorphic, and
worth exploring.

17

Schedule generation: Multiplicity

One can notice from the triangle counting algorithm that a schedule
can have a multiplicity problem. In general, one needs to determine
the multiplicity for a given pattern. Figure below shows the algorithm
the authors provide for this task.

18

Code generation: Single pattern

schedule is represented by a series of functions F1, ...,Fn , each
depending on the vertices [v0, ..., vk−1]. Such a pattern naturally
lends itself to a nested loop structure. At each loop level k, the loop
body traverses the vertex set Vk−1 and apply Fk to [v0, ..., vk−1] to
create a vertex set Vk for the next loop.

19

Code generation: Single pattern

However, while memory footprint is minimized, we need to fetch the
neighbors for each vertex each time in the inner loop.

To avoid that, We define a prefix Fp
k of Fk which contain all of its

operations on only vertices [v0, ..., vp1]. The prefix is pre-computed
and its results stored.

20

Code generation: optimal schedule

As we have shown before, many schedules exist for a particular
pattern.But one must be selected

This task is challenging because: 1- the embedded structure and the
complex set compositions used in the schedules. 2- it is a function
of the input graph.

The problem is simplified by considering a random graph, where
each edge has a probability p.

Hence, the expected size of a neighbor set is n× p. The expected size
of N (vi) ∩N (vj) and N (vi)−N (vj) is hence np2 and np(1− p),
respectively.

With the estimate for the two basic operations, we can further
estimate the size of the resultant set of any function Fk, and hence
we obtain the complexity for the schedule.

21

Code generation: Multi-pattern schedule

If multiple patterns need to be counted, some of the schedule
operations can be shared to avoid repeating computation

e.g., Schedules for every pattern start with the same F1 and F2, and
may remain the same for levels beyond that.

22

Evaluation

Evaluation: summary

In this section, the authors evaluate AutoMine’s performance
against three graph mining systems: Arabesque, RStream, and ASAP.

The highlights of the results are as follows:

1) For 24 different mining workloads on real-world graphs, AutoMine
is up to 4 orders of magnitude faster than Arabesque, running on 10
machines, and RStream.

2) ASAP uses approximation techniques to accelerate graph mining.
Even when it uses 16 machines and 5% as the error target, ASAP
takes on average 12.8X longer time to perform size-3 motif counting
on 4 real-world graphs compared to AutoMine.

3) AutoMine, thanks to its efficient memory use and out-of-core
processing capability, can successfully process a graph with more
than 25 billion edges.

23

Evaluation: against Arabesque and RStream

24

Evaluation: against Arabesque and RStream

Figure below shows the capacity needed by RStream and AutoMine
to fit the entire workload (graph plus intermediates) into the main
memory.

Triangle counting incurs on average 520MB space overhead for
intermediates. AutoMine reduces the average space overhead to only
8.4KB.

25

Evaluation: against ASAP

Despite producing the exact counts using a single machine,
AutoMine outperforms ASAP, running on 16 machines, by up to 68.8X
(on average 12.8X).

The reason is that ASAP basic approach to enumerate and store
embeddings, hence inheriting the major weaknesses of inefficient
algorithms and high memory consumption.

26

Evaluation: Schedule Selection

AutoMine’s greedy approach successfully select a good schedule that
is 2.4X faster than the slowest schedule and only is 9.9% slower than
the optimal schedule (In 4-motif counting).

27

Evaluation: Scalability

From 1 thread to 10 threads, AutoMine enjoys almost linear
scalability, which becomes worse beyond 10 threads and further
degrade beyond 20 threads. Perhaps due to NUMA effect.

28

Evaluation: Large patterns

These are the first 8-node pattern results published for graphs of
this scale,.

29

Conclusions and Discussion

Conclusions and Discussion

• Auto Mine gives good performance while maintaining
abstraction by overcoming two main challenges:
1. Efficient utilization of memory
2. Using efficient graph mining algorithm automatically.

• the proposed system produces up to several
order-of-magnitude higher performance than existing systems
for a variety of graph mining tasks on real-world graphs,
despite running on a single machine.

30

Discussion:

1. A common theme in the papers we have seen in the last couple
of weeks is the trade off between high level abstraction and
performance. This paper shows that it is possible to provide
both. What other systems can you think of that has achieved
similar feat.

2. This is paper is quite recent (October 2019). How do you think it
will be received in the graph mining community?

31

Thank You

31

	Introduction & Motivation
	Overview of AutoMine
	Key Features
	Evaluation
	Conclusions and Discussion

