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Background

Sort-merge joins

SELECT * FROM R, S WHERE F(R.key) = G(S.key)

Sort phase: sort R ’s keys according to F and S ’s keys according to G
Merge phase: mergesort-style matching of keys from R and S

Works for any comparator

Requires sorting

Sorting is known to be parallelizable

Merging is much harder to parallelize
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Background

Hash joins

SELECT * FROM R, S WHERE F(R.key) = G(S.key)

Build phase: create base hashtable H from applying F to keys of R
Probe phase: apply G to keys in S and find matches in H to join

Embarrassingly parallel

Requires lots of memory to store H

Frequently incurs cache misses for large tables

Requires equijoins (which are fairly common)
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Background

Non-uniform memory access

P1

P2

P3

P4

M1 M2

P1 can access M1 easily, but M2 is a little more costly

Lots of data movement to “farther” memory increases
bandwidth congestion
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Parallel sort-merge joins

Parallel run-generation

Sorting networks

Few data dependencies

No branching

Only sorts across vectors

e = min(a, b)

f = max(a, b)

g = min(c, d)

h = max(c, d)

i = min(e, g)

j = min(f, h)

w = min(e, g)

x = min(i, j)

y = max(i, j)

z = max(f, g)
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Parallel sort-merge joins

Parallel run-generation

5 28 1 13 20 8 2 15 12 14 19 17 6 7 22 21

5 7 1 13 6 8 2 15 12 14 19 17 20 28 22 21

5 6 12 20 7 8 14 28 1 2 19 22 13 15 17 21

a

b

Sorting network in (a) generates vectors sorted across positions

Shuffling in (b) transposes vectors so that each vector is sorted
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Parallel sort-merge joins

Parallel merge

Bitonic merge networks

Scales poorly

Used as a kernel sort

Adds branch predictions

Avoids scalar-vector register
movement
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Parallel sort-merge joins

Out-of-cache sorting

Multi-way merging

Two-way merge units
connected with FIFO buffers

External memory bandwidth
only at front of multi-way
merge tree

Helps combat NUMA
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Parallel sort-merge joins

Sort-merge: choose your fighter

m-way

NUMA-local partitions

Tables sorted symmetrically

Multiway merging for

Single-pass merge join

m-pass

Similar to m-pass

Two-way bitonic merging
instead of multiway merging

mpsm

Globally partitions & sorts
one table

Partially sorts the other table

Keys in S are a subset of keys
in R

First table merged w/ NUMA
remote runs of second table
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Parallel hash joins

Radix partitioning

Problem: large hashtables result in many cache misses
Solution: radix partitioning

Moves tuples to destination partitions (pages)

Reduces TLB miss effects during partitioning

TLB size limits the fan-out of the partitioning step
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Parallel hash joins

Software-managed buffers

Problem: radix partitioning is limited by TLB sizes
Solution: buffer writes in cache

Extra copy step

TLB fetch only needed once every N tuples in a partition

More I/O reordering due to buffered writes & less TLB pressure

Cache line-sized buffers can enable blind writes, which are faster
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Parallel hash joins

Hash: choose your fighter

radix

Parallel radix-hash join

Partitioned according to
radix-hash

Cache-local hash joins on
partition pairs

n-part

Emabarrassingly-parallelized
hash join

Tables sharded/striped across
workers

Build a shared hashtable
based on one table

Hash-and-match with the
second table
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Evaluation

Setup

Benchmarks:

m-way (sort-merge)

m-pass (sort-merge)

mpsm (sort-merge)

radix (hash)

n-part (hash)

Workloads:

Column-store

4-byte keys and values, all
integers

Keys in S are a proper subset
of keys in R

Generally uniform key
distribution in S
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Evaluation

Environment

256-bit AVX (floating-point only)

64 threads = 4 sockets, 8 cores/socket, hyperthreading enabled

L1/L2/L3 cache sizes: 32KiB/256KiB/20MiB

L3 is socket-local

Cache line size: 64B

TLB1: 64 entries for 64KiB pages; 32 entries for 2MiB pages

TLB2: page size 4KiB, 512 entries per TLB1 entry

William Qian Sort vs. Hash 2020 April 16 18 / 32



Evaluation

Experiments

Sorting baseline Merging baseline Partitioning

Alternative merges m-way factors Input size

Data skew Scalability
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Evaluation

Sorting baselines

Evaluating single-threaded
performance

Confirm that AVX sorting is
efficient
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Evaluation

Merging

Larger merging fan-ins lead to
smaller buffers

Software managed buffers
perform stably

Idea: partition instead of
merge

William Qian Sort vs. Hash 2020 April 16 21 / 32



Evaluation

Merging

Partition-then-sort: range-partition, sort, concatenate

Sort-then-merge: what we’ve been discussing

Partitioning doesn’t degrade like merging does!
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Evaluation

Sort-merge champion: m-way

Multi-way merge helps when
memory is contended

AVX benefit is persistent
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Evaluation

Hash champion: radix-hash

Radix-hash with software-managed buffers [2]
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Evaluation

Sort vs. Hash: Input size

Radix-hash wins at smaller
sizes

Radix-hash degrades quickly
with larger sizes

m-way doesn’t degrade with
table size, but

m-way performs ≈radix-hash
at best
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Evaluation

Sort vs. Hash: Skew

Radix-hash

Fine-granular task
decomposition [2, 3]

Redistributes “hotter”
partitions to all threads

m-way

Multi-way merging’s two-step
approach:

1 Sub-task merges, split in
NUMA region

2 Special handling for heavy
hitters
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Evaluation

Sort vs. Hash: Scalability

Sort-merge algorithms all
scale

Radix-hash scales as well
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Evaluation

Sort vs. Hash

Radix-hash works well

m-way is about similar for
larger joins

Hash joins are still the winners
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Evaluation
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Discussion

Feedback

Positive:

Paper layout is very readable!

Lots of appropriate data visuals

Thorough work on minimizing effects of external factors

Good balance of self and cross-system comparisons

Constructive:

Throughput vs execution time graphs can be confusing

Hyperthread scaling cap for memory-restricted workloads is
well-known

Generally should avoid benchmarking with hyperthreads

William Qian Sort vs. Hash 2020 April 16 31 / 32



Discussion

Discussion

1 How could multi-way merging benefit from advances with
(parallel) funnelsort?

2 How would a non-NUMA architecture affect these results?
3 How could these results translate to other database data

layouts?

Delta encodings
Bit vector layouts
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