
Multi-Core, Main-Memory Joins: Sort vs. Hash

Revisited

Cagri Balkesen, Gustavo Alonso, Jens Teubner, M. Tamer Özsu

Presented by William Qian

2020 April 16
6.886 Spring 2020

William Qian Sort vs. Hash 2020 April 16 1 / 32



Overview

1 Background

2 Parallel sort-merge joins

3 Parallel hash joins

4 Evaluation

5 Discussion

William Qian Sort vs. Hash 2020 April 16 2 / 32



Background

1 Background

2 Parallel sort-merge joins

3 Parallel hash joins

4 Evaluation

5 Discussion

William Qian Sort vs. Hash 2020 April 16 3 / 32



Background

Sort-merge joins

SELECT * FROM R, S WHERE F(R.key) = G(S.key)

Sort phase: sort R ’s keys according to F and S ’s keys according to G
Merge phase: mergesort-style matching of keys from R and S

Works for any comparator

Requires sorting

Sorting is known to be parallelizable

Merging is much harder to parallelize

William Qian Sort vs. Hash 2020 April 16 4 / 32



Background

Hash joins

SELECT * FROM R, S WHERE F(R.key) = G(S.key)

Build phase: create base hashtable H from applying F to keys of R
Probe phase: apply G to keys in S and find matches in H to join

Embarrassingly parallel

Requires lots of memory to store H

Frequently incurs cache misses for large tables

Requires equijoins (which are fairly common)

William Qian Sort vs. Hash 2020 April 16 5 / 32



Background

Non-uniform memory access

P1

P2

P3

P4

M1 M2

P1 can access M1 easily, but M2 is a little more costly

Lots of data movement to “farther” memory increases
bandwidth congestion

William Qian Sort vs. Hash 2020 April 16 6 / 32



Parallel sort-merge joins

1 Background

2 Parallel sort-merge joins

3 Parallel hash joins

4 Evaluation

5 Discussion

William Qian Sort vs. Hash 2020 April 16 7 / 32



Parallel sort-merge joins

Parallel run-generation

Sorting networks

Few data dependencies

No branching

Only sorts across vectors

e = min(a, b)

f = max(a, b)

g = min(c, d)

h = max(c, d)

i = min(e, g)

j = min(f, h)

w = min(e, g)

x = min(i, j)

y = max(i, j)

z = max(f, g)

William Qian Sort vs. Hash 2020 April 16 8 / 32



Parallel sort-merge joins

Parallel run-generation

5 28 1 13 20 8 2 15 12 14 19 17 6 7 22 21

5 7 1 13 6 8 2 15 12 14 19 17 20 28 22 21

5 6 12 20 7 8 14 28 1 2 19 22 13 15 17 21

a

b

Sorting network in (a) generates vectors sorted across positions

Shuffling in (b) transposes vectors so that each vector is sorted

William Qian Sort vs. Hash 2020 April 16 9 / 32



Parallel sort-merge joins

Parallel merge

Bitonic merge networks

Scales poorly

Used as a kernel sort

Adds branch predictions

Avoids scalar-vector register
movement

William Qian Sort vs. Hash 2020 April 16 10 / 32



Parallel sort-merge joins

Out-of-cache sorting

Multi-way merging

Two-way merge units
connected with FIFO buffers

External memory bandwidth
only at front of multi-way
merge tree

Helps combat NUMA

William Qian Sort vs. Hash 2020 April 16 11 / 32



Parallel sort-merge joins

Sort-merge: choose your fighter

m-way

NUMA-local partitions

Tables sorted symmetrically

Multiway merging for

Single-pass merge join

m-pass

Similar to m-pass

Two-way bitonic merging
instead of multiway merging

mpsm

Globally partitions & sorts
one table

Partially sorts the other table

Keys in S are a subset of keys
in R

First table merged w/ NUMA
remote runs of second table

William Qian Sort vs. Hash 2020 April 16 12 / 32



Parallel hash joins

Radix partitioning

Problem: large hashtables result in many cache misses
Solution: radix partitioning

Moves tuples to destination partitions (pages)

Reduces TLB miss effects during partitioning

TLB size limits the fan-out of the partitioning step

William Qian Sort vs. Hash 2020 April 16 13 / 32



Parallel hash joins

Software-managed buffers

Problem: radix partitioning is limited by TLB sizes
Solution: buffer writes in cache

Extra copy step

TLB fetch only needed once every N tuples in a partition

More I/O reordering due to buffered writes & less TLB pressure

Cache line-sized buffers can enable blind writes, which are faster

William Qian Sort vs. Hash 2020 April 16 14 / 32



Parallel hash joins

Hash: choose your fighter

radix

Parallel radix-hash join

Partitioned according to
radix-hash

Cache-local hash joins on
partition pairs

n-part

Emabarrassingly-parallelized
hash join

Tables sharded/striped across
workers

Build a shared hashtable
based on one table

Hash-and-match with the
second table

William Qian Sort vs. Hash 2020 April 16 15 / 32



Evaluation

1 Background

2 Parallel sort-merge joins

3 Parallel hash joins

4 Evaluation

5 Discussion

William Qian Sort vs. Hash 2020 April 16 16 / 32



Evaluation

Setup

Benchmarks:

m-way (sort-merge)

m-pass (sort-merge)

mpsm (sort-merge)

radix (hash)

n-part (hash)

Workloads:

Column-store

4-byte keys and values, all
integers

Keys in S are a proper subset
of keys in R

Generally uniform key
distribution in S

William Qian Sort vs. Hash 2020 April 16 17 / 32



Evaluation

Environment

256-bit AVX (floating-point only)

64 threads = 4 sockets, 8 cores/socket, hyperthreading enabled

L1/L2/L3 cache sizes: 32KiB/256KiB/20MiB

L3 is socket-local

Cache line size: 64B

TLB1: 64 entries for 64KiB pages; 32 entries for 2MiB pages

TLB2: page size 4KiB, 512 entries per TLB1 entry

William Qian Sort vs. Hash 2020 April 16 18 / 32



Evaluation

Experiments

Sorting baseline Merging baseline Partitioning

Alternative merges m-way factors Input size

Data skew Scalability

William Qian Sort vs. Hash 2020 April 16 19 / 32



Evaluation

Sorting baselines

Evaluating single-threaded
performance

Confirm that AVX sorting is
efficient

William Qian Sort vs. Hash 2020 April 16 20 / 32



Evaluation

Merging

Larger merging fan-ins lead to
smaller buffers

Software managed buffers
perform stably

Idea: partition instead of
merge

William Qian Sort vs. Hash 2020 April 16 21 / 32



Evaluation

Merging

Partition-then-sort: range-partition, sort, concatenate

Sort-then-merge: what we’ve been discussing

Partitioning doesn’t degrade like merging does!

William Qian Sort vs. Hash 2020 April 16 22 / 32



Evaluation

Sort-merge champion: m-way

Multi-way merge helps when
memory is contended

AVX benefit is persistent

William Qian Sort vs. Hash 2020 April 16 23 / 32



Evaluation

Hash champion: radix-hash

Radix-hash with software-managed buffers [2]

William Qian Sort vs. Hash 2020 April 16 24 / 32



Evaluation

Sort vs. Hash: Input size

Radix-hash wins at smaller
sizes

Radix-hash degrades quickly
with larger sizes

m-way doesn’t degrade with
table size, but

m-way performs ≈radix-hash
at best

William Qian Sort vs. Hash 2020 April 16 25 / 32



Evaluation

Sort vs. Hash: Skew

Radix-hash

Fine-granular task
decomposition [2, 3]

Redistributes “hotter”
partitions to all threads

m-way

Multi-way merging’s two-step
approach:

1 Sub-task merges, split in
NUMA region

2 Special handling for heavy
hitters

William Qian Sort vs. Hash 2020 April 16 26 / 32



Evaluation

Sort vs. Hash: Scalability

Sort-merge algorithms all
scale

Radix-hash scales as well

William Qian Sort vs. Hash 2020 April 16 27 / 32



Evaluation

Sort vs. Hash

Radix-hash works well

m-way is about similar for
larger joins

Hash joins are still the winners

William Qian Sort vs. Hash 2020 April 16 28 / 32



Evaluation

References

Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M Tamer Özsu.

Multi-core, main-memory joins: Sort vs. hash revisited.
Proceedings of the VLDB Endowment, 7(1):85–96, 2013.

Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M Tamer Özsu.

Main-memory hash joins on multi-core cpus: Tuning to the underlying hardware.
In 2013 IEEE 29th International Conference on Data Engineering (ICDE), pages 362–373. IEEE, 2013.

Changkyu Kim, Tim Kaldewey, Victor W Lee, Eric Sedlar, Anthony D Nguyen, Nadathur Satish, Jatin Chhugani, Andrea

Di Blas, and Pradeep Dubey.
Sort vs. hash revisited: Fast join implementation on modern multi-core cpus.
Proceedings of the VLDB Endowment, 2(2):1378–1389, 2009.

William Qian Sort vs. Hash 2020 April 16 29 / 32



Discussion

1 Background

2 Parallel sort-merge joins

3 Parallel hash joins

4 Evaluation

5 Discussion

William Qian Sort vs. Hash 2020 April 16 30 / 32



Discussion

Feedback

Positive:

Paper layout is very readable!

Lots of appropriate data visuals

Thorough work on minimizing effects of external factors

Good balance of self and cross-system comparisons

Constructive:

Throughput vs execution time graphs can be confusing

Hyperthread scaling cap for memory-restricted workloads is
well-known

Generally should avoid benchmarking with hyperthreads

William Qian Sort vs. Hash 2020 April 16 31 / 32



Discussion

Discussion

1 How could multi-way merging benefit from advances with
(parallel) funnelsort?

2 How would a non-NUMA architecture affect these results?
3 How could these results translate to other database data

layouts?

Delta encodings
Bit vector layouts

William Qian Sort vs. Hash 2020 April 16 32 / 32


	Background
	Parallel sort-merge joins
	Parallel hash joins
	Evaluation
	Discussion

