Comparison of 13
Relational Equi-joins in
Main Memory

Stefan Schuh, Xiao Chen, Jens Dittrich

Presented by Aron Ricardo Perez-Lopez

Database Joins

* Relational: data presented as tables

* Join: combine tables along some criteria

* Inner join: all rows where a condition matches across the tables
e Quter join: all rows from all tables with matching ones combined
* Left join: all rows from first table extended with matching values
* Equi-join: combine based on equality of values in columns

Problems with Previous Papers

* Different implementations
 Different optimizations

* Different performance metrics = ratio of sum of relation sizes to
runtime

e Different machines
e Different benchmarks

Starting Algorithms

* PRB: two-pass parallel radix join — partitioning, hash-based join
* NOP: no-partitioning hash join

* CHTJ: concise hash table join — no-partitioning hash join
* MWAY: m-way sort join — sort-merge join

Experimental Results |

MWAY mm CHTJ mm PRB m= NOP mm

1000

800

600

400

Throughput [M tuples/s]

200

0

Figure 1: Black box comparison of the fundamental join repre-
sentatives using 32 threads and relation sizes |R| = 128M and
S| = 1280M.

Modified Algorithms

 (NUMA-awareness: equally allocate partition buffer over nodes)
* Already enabled for previous tests

e PRO: modified PRB

e Software write-combine buffers — reduces TLB misses

* Non-temporal streaming: bypasses cache when writing — prevents polluting
the cache with data that will not be read again

* Only one pass
* PRL: PRO with linear probing instead of chaining
* PRA: PRO with dynamic array instead of hash table
* NOPA: NOP with dynamic array instead of hash table

Experimental Results |l

MWAY == PRB ==NOPA mm PRL ==
CHTJ mm NOP m= PRO mm PRA mm

L ltbE e
200 [verrmose o e
1000
800
600
400
200
0

Figure 3: Join throughput including improved versions. We ob-
serve almost a twofold performance improvement over the black-
box versions shown in Figure 1.

Figure 1

Throughput [M tuples/s]

Optimized Algorithms

 CPRL, CPRA: based on PRL and PRA

* Original implementation causes a lot a random remote writes

* Chunking keeps locally computed data (hash table and histogram) in the
nodes and reads the data needed for joining.

 PROIS, PRLIS, PRAIS: based on PRO, PRL, and PRA

* Original implementation causes all threads scheduled to run simultaneously
to read from the same node.

* Order of threads corresponding to different partitions changed to
accommodate data available on various nodes.

Experimental Results Ill: PRO-derivatives

PRO s« PRL PRA == CPRL
PROIS PRLIS == PRAIS CPRA

1000

800

600

400

Runtime [ms]

200

0

Figure 7: Runtime of PR* and CPR*-algorithms vs their vari-
ants with improved scheduling (PR *iS-algorithms). Relation sizes:
IR| = 128M, |S| = 1280M. Lighter colors denote the partition phase
and darker colors denote the join phase.

Experimental Results Ill: All 13 Algorithms

MWAY mm

CHTJ mm NOP m= PRO mm

Throughput [M tuples/s]

2000
1800
1600
1400
1200
1000
800
600
400
200
0

PRB NOPA mm PRL mm CPRL

PROIS PRAIS

PRA == CPRA mm PRLIS ==

Figure 8: Performance of all thirteen join algorithms when using
small (4 KB, dark color) and huge pages (2 MB, light color)

Experimental Results IlI: Scalability

MWAY -+ CHTJ =+ NOP NOPA =+ CPRL CPRA - PROIS PRLIS = PRAIS

2500
@ 2000
@
o
=
s 1500
=
2 1000
(@]
=
o
c 500
|_
0
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256 512 1024 2048
IR| [M tuples] [R| [M tuples]
(a) [S|=10*|R] (b) S| =R]

Figure 10: Throughput of join algorithms when scaling input dataset sizes

Experimental Results IlI: Real-World Query

NOP ==NOPA mm CPRL == CPRA
0.35 I

0.3
0.25
0.2
0.15
0.1
0.05

Runtime [s]

100

TPC-H Scalefactor
Figure 14: Runtime of TPC-H Query 19, colored bars mark the
fraction of the time spent in the actual join; the black bars mark the
time spent for the rest of the query.

Takeaways

* Clearly specify all options used in experiments.

e Use a simple algorithm when possible.

* Be sure to make your algorithm NUMA-aware.

* Use huge pages.

e Use Software-write combine buffer.

e Be aware that join runtime # query time.

* If in doubt, use a partition-based algorithm for large scale joins.

e Use the right number of partition bits for partition-based algorithms.
* Don’t use CPR* algorithms on small inputs.

Discussion Questions

* Do the authors manage to avoid the pitfalls they themselves mention
at the beginning of the article?
* Non-comparable implementations?
* Specific machine configuration?
* Real-world queries?

* Would it be more helpful to measure total query time?

