
Comparison of 13 
Relational Equi-joins in 

Main Memory
Stefan Schuh, Xiao Chen, Jens Dittrich

Presented by Áron Ricardo Perez-Lopez



Database Joins

• Relational: data presented as tables

• Join: combine tables along some criteria

• Inner join: all rows where a condition matches across the tables

• Outer join: all rows from all tables with matching ones combined

• Left join: all rows from first table extended with matching values

• Equi-join: combine based on equality of values in columns



Problems with Previous Papers

• Different implementations

• Different optimizations

• Different performance metrics → ratio of sum of relation sizes to 
runtime

• Different machines

• Different benchmarks



Starting Algorithms

• PRB: two-pass parallel radix join – partitioning, hash-based join

• NOP: no-partitioning hash join

• CHTJ: concise hash table join – no-partitioning hash join

• MWAY: m-way sort join – sort-merge join



Experimental Results I



Modified Algorithms

• (NUMA-awareness: equally allocate partition buffer over nodes)
• Already enabled for previous tests

• PRO: modified PRB
• Software write-combine buffers – reduces TLB misses
• Non-temporal streaming: bypasses cache when writing – prevents polluting 

the cache with data that will not be read again
• Only one pass

• PRL: PRO with linear probing instead of chaining

• PRA: PRO with dynamic array instead of hash table

• NOPA: NOP with dynamic array instead of hash table



Experimental Results II



Optimized Algorithms

• CPRL, CPRA: based on PRL and PRA
• Original implementation causes a lot a random remote writes

• Chunking keeps locally computed data (hash table and histogram) in the 
nodes and reads the data needed for joining.

• PROiS, PRLiS, PRAiS: based on PRO, PRL, and PRA
• Original implementation causes all threads scheduled to run simultaneously

to read from the same node.

• Order of threads corresponding to different partitions changed to 
accommodate data available on various nodes.



Experimental Results III: PRO-derivatives 



Experimental Results III: All 13 Algorithms



Experimental Results III: Scalability



Experimental Results III: Real-World Query



Takeaways

• Clearly specify all options used in experiments.

• Use a simple algorithm when possible.

• Be sure to make your algorithm NUMA-aware.

• Use huge pages.

• Use Software-write combine buffer.

• Be aware that join runtime ≠ query time.

• If in doubt, use a partition-based algorithm for large scale joins.

• Use the right number of partition bits for partition-based algorithms.

• Don’t use CPR* algorithms on small inputs.



Discussion Questions

• Do the authors manage to avoid the pitfalls they themselves mention 
at the beginning of the article?
• Non-comparable implementations?

• Specific machine configuration?

• Real-world queries?

• Would it be more helpful to measure total query time?


